Year Published

Research Topics

Types of Research

Dataset

EPAR TECHNICAL REPORT #353
Publication Date: 12/28/2020
Type: Literature Review
Abstract

Recent research has used typologies to classify rural households into categories such as “subsistence” versus “commercialized” as a means of targeting agricultural development interventions and tracking agricultural transformation. Following an approach proposed by Alliance for a Green Revolution in Africa, we examine patterns in two agricultural transformation hallmarks – commercialization of farm output, and diversification into non-farm income – among rural households in Ethiopia, Nigeria, and Tanzania from 2008-2015. We classify households into five smallholder farm categories based on commercialization and non-farm income levels (Subsistence, Pre-commercial, Transitioning, Specialized Commercial, and Diversified Commercial farms), as well as two non-smallholder categories (Largeholder farms and Non-farm households). We then summarize the share of households in each of these categories, examine geographic and demographic factors associated with different categories, and explore households’ movement across categories over time. We find a large amount of “churn” across categories, with most households moving to a different (more or less commercialized, more or less diversified) category across survey years. We also find many non-farm households become smallholder farmers – and vice versa – over time. Finally, we show that in many cases increases in farm household commercialization or diversification rates actually reflect decreased total farm production, or decreased total income (i.e., declines in the denominators of the agricultural transformation metrics), suggesting a potential loss of rural household welfare even in the presence of “positive” trends in transformation indicators. Findings underscore challenges with using common macro-level indicators to target development efforts and track progress at the household level in rural agrarian communities.

EPAR Research Brief #44
Publication Date: 08/17/2009
Type: Literature Review
Abstract

Bt maize technology involves developing hybrid maize crops that incorporate genes from the soil-dwelling bacteria Bacillus thuringiensis (Bt). The primary benefit of Bt maize technology is the heightened crop protection from stem borers, which are maize pests that can inflict serious crop losses. Bt maize has been cultivated in Mexico, South Africa and several countries in the European Union, with limited cultivation in Sub-Saharan Africa (SSA). This report provides a summary of literature on the potential benefits and challenges associated with Bt maize production in SSA. Research studies of Bt maize in the Philippines and South Africa are also briefly reviewed. There is little peer-reviewed literature available, with evidence challenging the assumed benefits of Bt maize for smallholder farmers in SSA. As a result, we also review research briefs and conference proceedings available from reputable international organizations. Although some of the available literature references the ethical concerns over Bt maize production, we focus on searching for science-based discussions related to any potential biodiversity, biosafety, or socio-economic impacts of Bt maize technology for smallholder farmers in SSA.

EPAR Technical Report #34
Publication Date: 05/03/2009
Type: Literature Review
Abstract

Lack of nitrogen (N) is often cited as the most limiting factor in agriculture. Although N composes nearly 80% of the atmosphere, plants are unable to use this form of the element (N2) because of the strong triple bonds between the two atoms. Nitrogen deficiency is especially problematic in the soils of Sub-Saharan Africa (SSA). Low levels of N and other soil fertility problems have severe poverty, malnutrition and environmental degradation consequences for SSA. The process by which atmospheric N2 is converted into N compounds that can be used by living things is called nitrogen fixation. Biological nitrogen fixation (BNF or biofixation) offers an alternative or additional means to traditional nitrogen fixation to increase plant-available nitrogen. Through a symbiotic relationship, an N-fixing bacterium infects a plant (usually a legume) and forms nodules on the roots of the plant in which N fixation occurs. This literature review examines the expansion and benefits of BNF, the constraints to BNF adoption, BNF regulations, and success stories of developing and distributing BNF technologies worldwide. BNF technology can be an efficient and effective tool for decreasing environmental degradation and increasing soil fertility, yields, income, and food security in SSA, although many constraints to farmer adoption exist.