Year Published

Research Topics

Populations

Geography

EPAR TECHNICAL REPORT #411
Publication Date: 05/24/2021
Type: Data Analysis
Abstract

In this database, we compile current project data from three major international financial institutions (or IFIs) - the World Bank, African Development Bank, and the International Fund for Agricultural Development - to understand

  1. how much countries are borrowing from each institution. and
  2. how much of that funding is devoted to small scale producer agriculture.

We begin by gathering publicly accessible data through downloads and webscraping Python and R scripts. These data are then imported into the statistical software program, Stata, for cleaning and export to Excel for analysis. This data set contains rich information about current projects (active, in implementation, or recently approved), such as project title, project description, borrowing ministry, commitment amount, and sector. We then code relevant projects into two categories: On Farm (projects pertaining directly to small scale producer agriculture) and Rural/Agricultural Economies (inclusive of On Farm, but broader to include projects that impact community livelihoods and wellbeing). Finally, we annualize and aggregate these coded projects by IFI and then by country for analysis. Bilateral funding, government expenditures on agriculture, and development indicators are also included as supporting data to add context to a country's progress towards agricultural transformation.

The primary utility of this dataset is having all projects collected in a single spreadsheet where it is possible to search by key terms (e.g. commodity, market, financial, value chain) for lending by IFI and country, and to get some level of project detail.  We have categorized projects by lending category (e.g. irrigation, livestock, agricultural development, research/extention/training) to aggregate across IFI so that the total funding for any country is easier to find. For example, Ethiopia and Nigeria receive the most total lending from these IFIs (though not on a per capita basis), with each country receiving more than $3 billion per year on average. Ethiopia receives the most lending devoted to On Farm projects, roughly $585 million per year.  Overall, these data provide a snapshot of the magnitude and direction of these IFI's lending over the past several years to sub-Saharan Africa. 

Code
EPAR TECHNICAL REPORT #353
Publication Date: 12/28/2020
Type: Literature Review
Abstract

Recent research has used typologies to classify rural households into categories such as “subsistence” versus “commercialized” as a means of targeting agricultural development interventions and tracking agricultural transformation. Following an approach proposed by Alliance for a Green Revolution in Africa, we examine patterns in two agricultural transformation hallmarks – commercialization of farm output, and diversification into non-farm income – among rural households in Ethiopia, Nigeria, and Tanzania from 2008-2015. We classify households into five smallholder farm categories based on commercialization and non-farm income levels (Subsistence, Pre-commercial, Transitioning, Specialized Commercial, and Diversified Commercial farms), as well as two non-smallholder categories (Largeholder farms and Non-farm households). We then summarize the share of households in each of these categories, examine geographic and demographic factors associated with different categories, and explore households’ movement across categories over time. We find a large amount of “churn” across categories, with most households moving to a different (more or less commercialized, more or less diversified) category across survey years. We also find many non-farm households become smallholder farmers – and vice versa – over time. Finally, we show that in many cases increases in farm household commercialization or diversification rates actually reflect decreased total farm production, or decreased total income (i.e., declines in the denominators of the agricultural transformation metrics), suggesting a potential loss of rural household welfare even in the presence of “positive” trends in transformation indicators. Findings underscore challenges with using common macro-level indicators to target development efforts and track progress at the household level in rural agrarian communities.