Research Topics

EPAR Research Brief #215
Publication Date: 08/31/2013
Type: Literature Review
Abstract

Maize has expanded through the 20th and into the 21st century to become the principle staple food crop produced and consumed by smallholder farm households in Sub-Saharan Africa (SSA), and maize production has also expanded in South Asia (SA) farming systems. In this brief we examine the environmental constraints to, and impacts of, smallholder maize production systems in SSA and SA, noting where findings apply to only one of these regions. We highlight crop-environment interactions at three stages of the maize value chain: pre-production (e.g., land clearing), production (e.g., fertilizer, water, and other input use), and post-production (e.g., waste disposal and crop storage). At each stage we emphasize environmental constraints on maize production (such as poor soil quality, water scarcity, or crop pests) and also environmental impacts of maize production (such as soil erosion, water depletion, or chemical contamination). We then highlight best or good practices for overcoming environmental constraints and minimizing environmental impacts in smallholder maize production systems. Evidence on environmental constraints and impacts in smallholder maize production is uneven. Many environmental concerns such as biodiversity loss are commonly demonstrated more broadly for the agroecology or farming systems in which maize is grown, rather than specifically for the maize crop. And more research is available on the environmental impacts of agrochemical-based intensive cereal farming in Asia (where high-input maize is a common component) than on the low-input subsistence-scale maize cultivation more typical of SSA. Decisive constraint and impact estimates are further complicated by the fact that many crop-environment interactions in maize and other crops are a matter of both cause and effect (e.g., poor soils decrease maize yields, while repeated maize harvests degrade soils). Fully understanding maize-environment interactions thus requires recognizing instances where shortterm adaptations to environmental constraints might be exacerbating other medium- or long-term environmental problems. Conclusions on the strength of published findings on crop-environment interactions in maize systems further depend on one’s weighting of economic versus ecological perspectives, physical science versus social science, academic versus grey literature, and quantity versus quality of methods and findings.

EPAR Research Brief #213
Publication Date: 08/31/2013
Type: Literature Review
Abstract

 In this brief we examine the environmental constraints to, and impacts of, smallholder sorghum and millet production systems in Sub-Saharan Africa (SSA) and South Asia (SA). Millet in this paper primarily refers to pearl millet (Pennisetum glaucum), although a number of other millets of significance to smallholder production and food security are also discussed. Sorghum and millets are known for being more tolerant of major environmental stresses including drought and poor soil quality than other major cereals. But water availability is still among the greatest constraints to increased grain production, and soil fertility also significantly limits yields, especially in cases where cultivation occurs on marginal lands and where crop residues are removed for alternative uses. Ultimately sorghum and millets’ relatively higher tolerance to abiotic stresses is expected to promote an increase in global cropping area for sorghum and millets as an adaptation to climate change. Sorghum and millet exhibit relatively few of the environmental impacts commonly associated with more intensively cultivated crops such as fertilizer runoff, pesticide contamination, or water depletion, since both of these crops are overwhelmingly grown by smallholder farmers with few, if any, chemical or irrigation inputs. Nevertheless, the tendency to grow sorghum and millet on marginal and heavily sloped lands does pose some environmental risks – including soil degradation and erosion – that can be mitigated through the adoption of best practices as described in the brief. 

EPAR Research Brief #208
Publication Date: 05/01/2013
Type: Literature Review
Abstract

Rice is the most important food crop of the developing world and is grown on over 155 million ha worldwide. Food security of the poor, especially in Asia, depends critically on rice availability at an affordable price. In this brief we examine the environmental constraints to, and impacts of, smallholder rice production systems in South Asia (SA) and Sub-Saharan Africa (SSA), noting where the analysis applies to only one of these regions. We highlight crop-environment interactions at three stages of the rice value chain: pre-production (e.g., land clearing), production (e.g., water and other input use), and post-production (e.g., waste disposal). At each stage we emphasize environmental constraints on production (e.g., poor soil quality, water scarcity, crop pests) and also environmental impacts of crop production (e.g., soil erosion, water depletion, pest resistance). We then highlight best or good practices for minimizing negative environmental impacts in smallholder rice production systems. Evidence on environmental issues in smallholder rice production is uneven. Far more research is available for Asian rice production systems, as compared to African rice systems. And with the possible exception of the evidence on water limits to increasing productivity, conclusions on the strength of published findings on crop-environment interactions in rice depends on one’s weighting of economic versus ecological perspectives, physical science versus social science, academic versus grey literature, and quantity versus quality of methods and findings.

EPAR Research Brief #212
Publication Date: 03/05/2013
Type: Literature Review
Abstract

This literature review examines the environmental constraints to, and impacts of, wheat production systems in South Asia (SA) and Sub-Saharan Africa (SSA). The review highlights crop-environment interactions at three stages of the wheat value chain: pre-production (e.g., land availability), production (e.g., heat, water, and soil), and post-production (e.g. storage, crop residues, and transport). At each stage we emphasize environmental constraints on production (e.g., poor soil quality, water scarcity, crop pests, etc.) and also environmental impacts of crop production (e.g., soil degradation, water depletion and pollution, greenhouse gas emissions, etc.). We then highlight published best practices for overcoming environmental constraints and minimizing environmental impacts in wheat production systems. We find that wheat is a significant crop that will need to increase production to meet increasing demand. Most land suitable for wheat production is already under cultivation. Improved production methods are needed to address the demand and avert environmental impacts of producing wheat.  It should not be assumed that improved varieties alone will be able to realistically address growing demands for wheat. Improved variety seeds should be combined with best practices of improved crop management techniques: optimal planting time, zero tillage, fertilizer management, intercropping, crop residue incorporation, and improved storage techniques.

EPAR Technical Report #218
Publication Date: 01/13/2013
Type: Literature Review
Abstract

This desk study reports on the small-scale machinery sector in China and a selection of SSA countries: Ethiopia, Tanzania, Nigeria, Burkina Faso, and Uganda. The report is organized into three sections. Section 1 discusses the current state of small-scale agricultural machinery in SSA for crop and livestock production in each of the SSA countries identified. It also seeks to identify major areas of need in terms of agricultural mechanization and major constraints to agricultural machinery adoption, dissemination and maintenance. Section 2 focuses on the agricultural machinery sector in China and Chinese Africa relationships in agricultural development. It also identifies the major government players in the Chinese agricultural machinery sector. Section 3 is a “directory” of small-scale agricultural machinery manufactured in China with potential relevance for SSA smallholder farmers. We divide machines by function (e.g. threshing) although many Chinese machines are multi-function and can serve multiple purposes. We also note applicable crops, if listed by the manufacturers, and technical specifications as available.

EPAR Results Coding #138
Publication Date: 05/12/2011
Type: Literature Review
Abstract

This presentation summarizes the biotic (insects, viruses, fungi, bacteria, weeds, and post-harvest pests) and abiotic (drought and soil nutrients) stresses that may be addressed or countered in order to improve crop yield in Sub-Saharan Africa and South Asia. Data is sourced from FAOSTAT, GAEZ, a series of academic papers by Waddington & Dixon, and IMPACT model estimates. Slides compare area harvested, yield, and yield gap percentage with total calories per year, the 2005 value of production, and projected growth between 2005-2030. 

EPAR Technical Report #118
Publication Date: 03/16/2011
Type: Literature Review
Abstract

This report combines analyses from four previous EPAR briefs on the effects of climate change on maize, rice, wheat, sorghum, and millet production in Sub-Saharan Africa (SSA). In addition, this brief presents new analysis of the projected impact of climate changes in SSA. We include comparisons of the importance of each crop, of their vulnerability to climate change, and of the research and policy resources dedicated to each. Especially with respect to climatic susceptibility, these rankings provide a comparative summary based upon the analysis conducted in the four previous EPAR briefs, statistical analyses of historical yield and climate data, and future climate model predictions. According to the indicators analyzed, our research suggests that maize leads the cereal crops in terms of importance within SSA and in terms of research and policy attention. Our analysis of climate conditions and the crop’s physical requirements suggests that many maize-growing areas are likely to move outside the range of ideal temperature and precipitation conditions for maize production. Rice is the third most important crop in terms of consumption dependency, fourth in terms of production, but second only to maize in terms of research funding and FTEs. Sorghum and millet rank second and third in production importance and second and fifth in consumption importance, but rank below maize and rice in terms of FTE researchers. Their role is complicated by the fact that they are often considered inferior goods; SSA consumers often substitute away from sorghum and millet consumption if they are able to do so. Wheat is the least-produced crop of the five, and the second to last in terms of consumption importance. However, it still ranks above millet in terms of FTE researchers.

EPAR Technical Report #130
Publication Date: 01/29/2011
Type: Literature Review
Abstract

The purpose of this literature review is to provide qualitative and quantitative examples of technologies, constraints and incentives for efficient waste treatment and reuse in Sub-Saharan Africa and Southeast Asia.  We present relevant case studies and expert observations and experiences on the nutrient content in urine and feces, contaminants frequently found in untreated sludge and wastewater, waste treatment technologies that may be relevant for low-income countries, risks associated with waste reuse, benefits to resource recovery in agriculture. We further discuss reasons for waste treatment failures, including urbanization, observations on challenges with market-driven reuse in less developed countries, and examples of net-positive energy facilities in Europe and the United States. Much of the evidence presented in the literature relates to wastewater treatment processes or the sludge produced from wastewater treatment as opposed to untreated fecal sludge.  However, examples of risks, failures, and opportunities for raw sludge treatment and reuse are discussed when available.  In some cases, empirical evidence or case studies were not available for developing countries and alternatives are presented.  Overall we found the empirical evidence on waste treatment and reuse in developing countries is quite thin. 

EPAR Technical Report #115
Publication Date: 12/14/2010
Type: Literature Review
Abstract

As part of the Crops & Climate Change series, this brief is presented in three parts: 1) An evaluation of the importance of Sorghum and Millet in SSA, based on production, net exports, and caloric need, 2) A novel analysis of historical and projected climate conditions in Sorghum and Millet growing regions, followed by a summary of the agronomic and physiological vulnerability of Sorghum and Millet crops, 3) A summary of current resources dedicated to sorghum and millet, based on research and development investments and National Adaptation Programmes of Action. Our analysis indicates that sorghum and millets may become increasingly important in those areas of SSA predicted to become hotter and subject to more variable precipitation as a result of climate change. Although sorghum and millet are currently grown on marginal agricultural lands and consumed for subsistence by poorer population segments, climate change could render these drought- and heat-tolerant crops the most viable future cereal production option in some areas where other cereals are currently grown. Fewer international development resources are currently devoted to sorghum and millet than are devoted to other cereal grains, and current resource allocation may not reflect the increased reliance on these grains necessitated by projected climactic changes.

EPAR Technical Report #114
Publication Date: 12/14/2010
Type: Literature Review
Abstract

As part of the Crops & Climate Change series, this brief is presented in three parts: 1) An evaluation of the importance of wheat in SSA, based on production, net exports, and caloric need, 2) A novel analysis of historical and projected climate conditions in wheat-growing regions, followed by a summary of the agronomic and physiological vulnerability of wheat crops, 3) A summary of current resources dedicated to wheat, based on research and development investments and National Adaptation Programmes of Action. Overall, this analysis indicates that the importance of wheat as an imported product remains high throughout SSA, though food crop production and dependence is concentrated in a relatively small area. Wheat-growing regions throughout SSA are likely to face yield decreases as a result of predicted rises in temperatures and possible changes in precipitation. Resources intended to aid adaptation to climate change flow primarily from public sector research and development efforts, though country-level adaptation strategies have not prioritized wheat.