Research Topics

Populations

Dataset

EPAR RESEARCH BRIEF #386
Publication Date: 05/08/2019
Type: Research Brief
Abstract

In many countries in Sub-Saharan Africa and South Asia smallholder farmers are among the most vulnerable to climatic changes, and the observed shocks and stresses associated with these changes impact agricultural systems in many ways. This research brief offers findings on observed or measured changes in precipitation, temperature or both, on five biophysical pathways and systems including variable or changing growing seasons, extreme events, biotic stressors, plant species density, richness and range, impacts to streamflow, and impacts on crop yield. These findings are the result of a review of relevant documents cited in Kilroy (2015), references included in the IPCC draft Special Report on Food Security, and targeted searches from 2015 - present for South Asia and Sub-Saharan Africa. 

EPAR Research Brief #99
Publication Date: 01/31/2009
Type: Literature Review
Abstract

Aflatoxin is a naturally occurring carcinogen produced by the fungus Aspergillus, particularly Aspergillus Flavus and Aspergillus Parasiticus. Aflatoxin contamination places an economic and health burden on farmers throughout the developing world, but reliable prevalence data are difficult to obtain. This report analyzes data from 25 primary research articles published within the last 15 years in order to provide a summary of aflatoxin contamination in the developing world. This report is divided into three parts, roughly aligning with phases of the agricultural value chain. Data for prevalence at the production and processing stage are presented first, followed by data for prevalence during storage, and finally by a summary of data for aflatoxin levels at consumption and point-of sale. We find maize and groundnuts to be the crops most affected by aflatoxin, while Southeast Asia and Sub-Saharan Africa are the geographic areas most likely to be affected. Agroecological conditions including warm humid climates, irrigated hot deserts, and droughts contribute to aflatoxin contamination, and we find that contamination can occur throughout the value chain.