Populations

Geography

Dataset

EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis
Abstract

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR Technical Report #59
Publication Date: 12/15/2009
Type: Research Brief
Abstract

Agriculture and Climate Change: Part I

With estimated global emissions of 5,969-6,615 metric tons (Mt) of carbon dioxide (CO2) per year, agriculture accounts for about 13.5% of total global anthropogenic emissions of greenhouse gases (GHG). Deforestation contributes about 11.8% of total GHG emissions, releasing about 5,800 Mt CO2 per year. Developing countries are largely responsible for emissions from agriculture and deforestation, with the developing countries of South Asia and East Asia accounting for 17% and 25% of global agricultural emissions respectively. Sub-Saharan Africa (SSA) accounts for about 13% of global emissions from agriculture and 15% of emissions from land use change and forestry. This report examines the biophysical and economic potential of mitigating agriculture and land use GHG emissions, and provides a summary on the current and projected impact of global carbon market mechanisms on emission reductions. 

Agriculture and Climate Change: Part II

This report covers two topics related to agriculture and climate change in developing countries. The first section discusses the role of agricultural offsets in mitigating greenhouse gas emissions. Recent negotiations around a post-Kyoto Protocol agreement have included debate about whether agricultural carbon sequestration projects should be eligible under the Clean Development Mechanism (CDM). We examine the reasons for supporting or opposing this type of CDM reform and how these reasons relate to impacts on development goals and smallholder farmers, scientific uncertainty about carbon sequestration, and philosophical disagreement about the use of emission offsets. The second section covers proposed agricultural adaptation activities in Africa and other developing countries. While the majority of developing countries have outlined immediate adaptation needs in National Adaptation Programs of Action (NAPAs), few have made progress in implementing adaptation activities. We find that issues related to financial resources, scientific and technical information, and capacity building continue to challenge developing countries in preparing for the impacts of climate change.
 

EPAR Technical Report #28
Publication Date: 08/10/2009
Type: Literature Review
Abstract

Smallholder farmers in Africa are largely located in poor rural areas, are often geographically dispersed, and have limited access to road and communication infrastructure, thus raising the cost of market participation. This is especially true for farmers growing relatively low value staple crops. This literature review summarizes research on the challenges and innovations in linking smallholder producers of staple grains to markets in Sub-Saharan Africa, with a focus on post-harvest issues including storage, aggregation, and transportation. For each post-harvest stage, we describe challenges faced by farmers and current efforts to address these challenges. In our review, we find a large amount of literature on the constraints to smallholder production and marketing but relatively few examples of innovative or novel technologies designed to improve storage and transportation for rural smallholder producers in Africa. Existing technologies have often been available for some time but have not seen widespread adoption, apparently due to high costs or inadequate funding for on-farm testing and extension. We conclude that the literature is somewhat divided as to whether interventions linking smallholder farmers to markets should be entirely market-driven and focus on linkages that can be profitable without subsidization, or whether NGO- and donor-driven interventions should play a role.