Year Published

Research Topics

Types of Research

EPAR Technical Report #335
Publication Date: 11/21/2017
Type: Data Analysis
Abstract
EPAR has developed Stata do.files for the construction of a set of agricultural development indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA). We are sharing our code and documenting our construction decisions both to facilitate analyses of these rich datasets and to make estimates of relevant indicators available to a broader audience of potential users. 
Code, Code, Code, Code
EPAR Technical Report #317
Publication Date: 11/16/2017
Type: Data Analysis
Abstract

In this report we analyze three waves nationally-representative household survey data from Kenya, Uganda, Tanzania, Nigeria, Pakistan, Bangladesh, India, and Indonesia to explore sociodemographic and economic factors associated with mobile money adoption, awareness, and use across countries and over time. Our findings indicate that to realize the potential of digital financial services to reach currently unbanked populations and increase financial inclusion, particular attention needs to be paid to barriers faced by women in accessing mobile money. While policies and interventions to promote education, employment, phone ownership, and having a bank account may broadly help to increase mobile money adoption and use, potentially bringing in currently unbanked populations, specific policies targeting women may be needed to close current gender gaps.

Code
EPAR Technical Report #140
Publication Date: 03/17/2011
Type: Data Analysis
Abstract

This brief explores agricultural data for Tanzania from the LSMS-ISA and Farmer First household surveys. We first present the differences in the LSMS and Farmer First survey design and in basic descriptives from the two data sources. We then present the results of our initial LSMS data analysis using the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), focusing on the agricultural data, before presenting our analysis of farmer aspirations and of gender differences using  the Farmer First data.