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Abstract 

This report compiles measures commonly used to track agricultural productivity and discusses the ways in 

which they are subject to error, bias, and other data limitations. Though each measure has limitations, 

choosing the measure(s) most appropriate to the goals of an analysis and understanding the sources of variation 

allows for more effective and closely targeted investments and policy and program recommendations, 

particularly when measures suggest different drivers of productivity growth and links to poverty reduction.  

 

Introduction 

Agricultural productivity growth has been empirically linked to poverty reduction across a range of measures 

for both staple and export crops (Timmer, 1995; Datt & Ravallion, 1998; Mellor, 1999; Fan, Hazell, & Thorat, 

1999; Irz, Lin, Thirtle et al., 2001; Thirtle, Irz, Lin et al., 2001; Minten & Barrett, 2008; Byerlee, Diao, & 

Jackson, 2009; Pingali, 2012). Many public and private organizations have thus made it a priority to increase 

farm productivity, and have invested billions toward this end (O’Sullivan, Banerjee, Gulati et al., 2014; FAO, 

2015; USAID, 2015; BMGF, 2015).  

 

This report examines measures of productivity rather than measures of output. Although the literature does not 

always clearly distinguish between the two, output (e.g., kilograms of crop produced) and productivity (e.g., 

total value of crop produced per unit of input used) may have a direct or inverse relationship depending on the 

circumstances, with different consequences for poverty. For example, expanding cultivated area may raise 

output and profits without raising yields. Alternatively, a yield-enhancing technology may increase output, but 

if input costs also increase, productivity and profit may remain constant or decline. Use of agricultural best 

practices may reduce input use while output remains constant, raising productivity. And an input price 

reduction will lower production costs and increase profit, but may not affect output or productivity. Thus, 

growth in productivity does not necessarily imply a reduction in poverty (Thirtle et al., 2001).     

 

According to Carletto et al. (2015b), “improvement in the measurement of land productivity has been 

identified as the highest priority in new research by the Global Strategy, a recent multi-agency initiative 

endorsed by the United Nations Statistical Commission in February 2010.” Yet measuring land productivity is 

not simple (Carletto, Gourlay, & Winters, 2015a; Fermont & Benson, 2011), and measuring productivity 

becomes even more complicated when inputs besides land are taken into account. A range of measures of 

partial and total factor productivity exist, with differing theoretical and practical justifications. We discuss 

these measures, along with their limitations, in detail below. Because the use of different measures can lead 
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to different understandings of the drivers of productivity growth, considering the comparative merit of each 

productivity measure and selecting the most appropriate one for the goals of the analysis allows for 

development of intervention strategies to most closely cater to targeted populations and development 

objectives.  

 

Defining Productivity Measures 

The literature defines and measures smallholder agricultural productivity in several ways, all of which are 

subject to error, bias, and measurement challenges. This report does not provide a comprehensive survey of 

productivity measures, but rather discusses the strengths and weaknesses of those used commonly in the 

published literature. Partial factor productivity measures, including common crop yield, account for only some 

inputs and outputs, most frequently land area and crop harvest quantity. Table 1 compares partial and total 

factor productivity measures.  

 

Table 1. Agricultural Productivity Measures and Methods 

PARTIAL FACTOR PRODUCTIVITY  

Yield by area harvested  

Biological yield  

(Gross yield) 

∑ Quantity produced (before harvest or postharvest loss) 

∑ Area harvested 
 

Harvested yield  

(Common crop yield) 

∑ Quantity harvested (before postharvest loss) 

∑ Area harvested 
 

Economic yield ∑ Quantity available for use (after harvest and postharvest loss) 

∑ Area harvested 
 

Yield by area planted ∑ Quantity harvested (before postharvest loss) 

∑ Area planted 
 

Production value per area ∑ Gross value of quantity harvested 

∑ Area planted or harvested
 

Technical efficiency 

Stochastic frontier method 

𝑦 = 𝑓(𝑥)𝑒𝑢+𝑣 

y = farmer’s observed output, f = production function frontier, x = vector of 

input levels, f(x) =maximum potential output, u = systematic deviation of 

output from potential, v= error 

TOTAL FACTOR PRODUCTIVITY  

Total Factor Productivity (First 

Stage of Estimation) 

Malmquist Index: Coelli method 

ln(𝑦𝑖𝑡) =  𝑓(𝑥𝑖𝑡, 𝑡, 𝛽) + 𝑣𝑖𝑡 − 𝑢𝑖𝑡 

yit = output of observation i at time t, x =vector of primary/intermediate 

inputs, β = vector of unknown parameters, vit = random disturbances, 

uit = productive inefficiency 

Net Farm Income Gross farm income – total variable cost – total fixed cost 

Note: Quantities are generally measured in kilograms or tons, and area in hectares or acres. 

Sources: Fermont & Benson, 2011; Diagne, 2002; Coelli et al., 1998, as cited in Rezek et al., 2011; Simonyan & Omolehin, 2012 

 

Yield measurement 

Yield includes several distinct measures of land productivity that consider land the sole input and crop 

production the sole output. These measures differ in when during the crop production cycle the numerator 

(crop production) and denominator (land area) are measured.  

 

In terms of crop production weight, biological or gross yield is measured before harvest-related and 

postharvest loss. Harvested yield is measured after harvest-related losses, but before postharvest loss. 

Biological yield and harvested yield are often not clearly distinguished – it is sometimes unclear from reports 

whether and how harvest-related losses are accounted for in yield calculations. Economic yield takes both 

harvest-related and postharvest losses into account, but is rarely used (Fermont & Benson, 2011), though a 
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growing literature on postharvest losses (e.g., rodents), spoilage (e.g., postharvest physiological deterioration 

in cassava), and contamination (e.g., mycotoxins) underscores the roles of postharvest processing and storage 

in increasing food available for consumption and securing higher prices (Reynolds et al., 2015).  

 

Land area in yield calculations may be measured at planting (yield by area planted, including all land area 

planted to a given crop) or at harvest (yield by area harvested, including only plots or sections of plots where 

harvest occurred). Harvested yield, which denominates crop production harvested by area harvested, is by far 

the most common yield measure reported in the literature (Fermont & Benson, 2011).  

 

However, measuring crop area at the time of harvest ignores potential sources of preharvest crop damage or 

failure that can reduce harvested area substantially. Smallholder farmers may experience partial or complete 

area loss between planting and harvesting due to poor germination or damage from pests, flooding, or drought. 

Additionally, farmers may forego harvesting land because of a lack of labor availability or market opportunities 

(Kaminski & Christiaensen, 2014). In cases where area harvested is less than area planted, yield by area 

harvested measures are likely to overestimate farmer productivity by excluding from analysis the portions of 

plots with null yield (Anderson, Reynolds, & Slakie, 2015). We discuss measurement error and other data 

limitations in the next section.  

  

All yield measures listed in Table 1 are measures of actual yield. Agronomists and others interested in 

increasing land productivity also estimate potential yields, or maximum yields attainable under given growing 

conditions. Agronomists use three primary methods to calculate potential yields: simulation using crop models, 

field experiments, and measurement of maximum farmer-achieved yields. The gap between potential yield and 

actual yield is known as the yield gap, and is used by agronomists and policymakers to predict the potential for 

land productivity increases and to target yield-enhancing interventions (Lobell, Cassman, & Field, 2009; 

Fischer, Byerlee, & Edmeades, 2009). Because this report focuses on measuring realized productivity, we will 

not further discuss potential yield or yield gaps. 

 

Alternatives to yield measurement 

Use of crop yield measures to proxy for farmer productivity has many limitations and its validity has been 

questioned (Cassidy et al., 2014; West et al., 2014). First, yield is calculated based on one input (land) and one 

output (crop production), and does not allow for consideration of other benefits or costs like labor, purchased 

inputs, or environmental damage (Tittonell & Giller, 2013). Further, most yield measures do not account for 

intercropping, a common practice among smallholder farmers, and among women in particular, where multiple 

crops are grown in one plot (Khan et al., 2014). Though intercropping has potential benefits in terms of soil 

fertility, dietary diversity, and risk management, yield measures typically underestimate the productivity of 

intercropped plots, because farmers plant each individual crop more sparsely on intercropped plots (Anderson 

et al., 2015).  

 

Technical efficiency accounts for some costs to the farmer (inputs) besides land, but still is based on crop 

production as the sole output. It measures farmers’ productivity compared to a maximum potential crop output 

achievable with fixed quantities of basic inputs included in the formula, such as land, seed, fertilizer, and 

water. The random variable u can account for sociodemographic factors that affect farmers’ technical 

efficiency (Diagne, 2002). A technically inefficient farmer fails to operate on the production frontier – an 

equivalent production quantity could be grown by a more efficient farmer using proportionally less of each 

input. Thus a gain in technical efficiency can be achieved either by increasing production quantity while 

holding input use constant, or by reducing input use while holding production constant (Fischer et al., 2009). 

Technical efficiency is reported as a ratio with a minimum value of zero and a maximum value of one. 
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Total factor productivity (TFP) captures total crop and livestock output, including intercrops and byproducts 

for fodder and fuel, and all inputs, including land, labor, seed and agrochemicals, and production technology 

(Rezek, Campbell, & Rogers, 2011). Livestock activities, which partial factor productivity measures like crop 

yield do not capture, are important to the welfare of many rural and agricultural populations, so their 

measurement is important in accurately assessing smallholder wellbeing (Carletto, Jolliffe, & Banerjee, 

2015b). A change in total factor productivity may be driven by technical change (introducing new input or 

output factors) or efficiency change (increasing output without changing factors of production) (Dias Avila & 

Evenson, 2010). Total factor productivity measures are considered superior to partial factor measures in the 

literature (Fuglie, 2008; Fuglie & Schimmelpfennig, 2010; Alston, Beddow, & Pardey, 2010; Fermont & Benson, 

2011; Alston & Pardey, 2014), but partial factor productivity measures are used far more often because they 

are much simpler to measure and calculate.  

 

Net farm income takes an approach based in finance, calculating net income by subtracting total fixed and 

variable costs from gross income (Simonyan & Omolehin, 2012; Birthal, Kumar, Negi et al., 2015; Rada, Wang, 

& Qin, 2015). Proponents of this method emphasize that the highest-yielding strategy for smallholder farmers 

(maximizing kg/ha) may not align with the best income-generating strategy per crop (maximizing net kg per 

dollar spent) or per farm (choice of crops to maximize net income earned per dollar spent). Net farm income is 

still subject to limitations, as it can be difficult to quantify inputs like labor or land in terms of monetary cost, 

and even crop value is difficult to estimate when farmers consume most of their production rather than selling 

it and when market prices vary seasonally (Carletto et al., 2015b). 

 

None of these measures effectively considers long-term costs and benefits, externalities, or risk management 

in rural economies. For example, farming decisions may have social and environmental consequences 

(pollution, deforestation, or use of water resources) that affect the broader community. The literature on 

ecosystem services valuation quantifies some of these costs and benefits, and offers measures that can be used 

alongside or integrated with a chosen productivity measure. Near-term choices, for example maximizing yields 

in the short run by drawing down soil nutrients without replenishing them, may limit sustained productivity 

increases over the long term. Additionally, in order to minimize or mitigate risk, farmers may make choices 

that maximize neither yield nor farm income. Diversification into non-farm activities to increase income, 

reduce risk, and smooth consumption across agricultural seasons is a common practice among smallholders, 

indicating that channels besides productivity growth need to be considered to improve smallholder wellbeing 

(Reardon, 1997; Bryceson, 2002; Davis, Winters, Carletto, et al., 2010; as cited in Carletto et al., 2015b). 

 

Error and Bias in Productivity Measurement and Analysis 

Aggregate-level measures 

Productivity measures are subject to error and bias at the national aggregate level as well as at the plot level. 

The FAOSTAT database of the Food and Agriculture Organization (FAO) of the United Nations, which compiles 

national-level production and yield estimates, is the most widely cited source of yield data (Sandefur & 

Glassman, 2015). However, the FAO methodology estimates harvested quantity and area based on reports from 

national ministries of agriculture, and these estimates may be subject to imprecision and inaccuracy as well as 

political incentives to over- or under-report yield numbers (Jerven, 2014; Sandefur & Glassman, 2015). The 

FAO considers only two of the 44 countries in Sub-Saharan Africa to have high standards for data collection. 

Many countries, especially the poorest, lack both financial and human resources to collect accurate agricultural 

data. And in some cases, FAOSTAT yield estimates differ from those published by ministries of agriculture or 

national statistical agencies themselves (Carletto et al., 2015b).  
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Furthermore, yields achieved by smallholder farmers may vary substantially from national average estimates 

when using common crop yield measurements (Waddington, Li, Dixon, et al., 2010), in part due to the 

sensitivity of averages to outlier data from very large or very small farms. Anderson et al. (2015) demonstrate 

this with rice yield data from the 2008-2009 Tanzania National Panel Survey.  

 

Farm- and plot-level measures 

Measuring inputs and outputs on the farm is also subject to inconsistency and bias. Debate exists in the 

literature over whether farmer-reported estimates of output quantity and land area are more accurate than 

weights and distances measured by crop researchers or survey enumerators. Area and quantity harvested can 

prove quite difficult for farmers to estimate, especially for crops such as cassava that are harvested as needed 

over several months (Fermont & Benson, 2011). But harvesting and measurement by enumerators or 

researchers is time-consuming and costly, requiring multiple visits to the farm between planting and harvest, 

and is more easily implemented for cereal crops or cash crops than for continuously harvested crops (Carletto 

et al., 2015b).  

 

In the case of land area, farmers frequently overestimate the area of small plots, underestimate the area of 

large plots, and round to even units, all of which can distort productivity measures, especially yields, which 

have a sole-input denominator (De Groote & Traoré, 2005; Carletto, Savastano, & Zezza, 2013; Carletto et al., 

2015a, 2015b). Further, in multiple-visit surveys such as the Living Standards Measurement Study – Integrated 

Surveys on Agriculture (LSMS-ISA), farmers occasionally report irreconcilable plot measures, such as an area 

harvested larger than the area planted or larger than the farmer-reported plot size, presenting a challenge to 

analysts. Measurement by GPS or rope and compass is possible for land area, but as with crop production, is 

time-consuming, costly, and subject to bias. For example, plots that go unmeasured in a survey are 

systematically different – typically farther away from households or roads, and often larger – from those plots 

that are measured. In the case of some LSMS-ISA data, so many plots in a sample are missing useable 

measurement data that analysis is impossible or constrained by low statistical power. Measurement error in 

GPS technology estimates can range from .5 to 4 meters, which is substantial for very small plots (Carletto et 

al., 2015b). And with any estimation method, accurate measurement is complicated by irregularly shaped 

plots, obstructions like stumps or anthills, and sloped plots, for which surface area is larger than productive 

area (Fermont & Benson, 2011).  

 

Unit conversion adds another layer of complexity to yield measurement. “Heaping” in the data, or clustering 

around common, even estimates such as one acre for plot area, that results from rounding is less apparent to 

the analyst when measures are converted from one area or weight unit to another (e.g., from 1 acre to .405 

hectares). Survey data does not necessarily include the appropriate conversion factors for analysis. And in some 

countries, commonly reported units are not standard across regions or districts, leading to complex conversion 

factor estimation processes (Fermont & Benson, 2011; Carletto et al., 2015a, 2015b). For example, in the 

Malawi LSMS-ISA, farmers may report harvested quantities in kilograms, or in small or large pails, No. 10 or No. 

12 plates, bunches, pieces, bales, baskets, or ox-carts. Further, these non-standard measures correspond to 

different amounts in different regions of the country, and volume-based measures (pails, plates, ox-carts, 50-

kg bags) correspond to different harvest weights (kg) depending on the denseness of the harvested crop and 

whether or not it has been shelled.  

 

Survey instrument design introduces further imprecision and bias. Intercrops in particular tend to be measured 

imprecisely, and farmers often must designate a primary crop on the plot. Farmers may be asked to estimate 

the fraction or percentage of the plot planted or harvested, rather than the area in acres or hectares. 

Instruments or enumerators may neglect questions entirely: for example, common crop yield (by area 



EVANS SCHOOL POLICY ANALYSIS  AND RESEARCH (EPAR)                                                     |  

 

6 

harvested) cannot be calculated from the Malawi LSMS–ISA survey data, because farmers were not asked what 

portion of their field was harvested. Surveys may not ask the condition of the crop when quantity is estimated 

(for example, maize on the cob, shelled, or ground into flour) (Carletto et al., 2015b). And even coordinated 

survey initiatives such as the LSMS-ISA are not closely aligned across countries. Differences in survey questions 

and implementation strategies by national agricultural and statistical agencies (such as timing and resources 

that affect recall periods) make cross-country analysis difficult.  

 

Farmer-reported measures are also subject to bias and error associated with reliance on recall. Surveys often 

ask farmers to recall crop area harvested, quantity harvested, and input and output prices over a period of 

weeks or months. Recent research suggests that farmers are able to remember costly investments or market 

transactions quite accurately (Beegle, Carletto, & Himelein, 2011), but more bias may be introduced for 

extended-harvest root and tuber crops and crops consumed at home rather than sold. Deininger et al. (2012) 

suggest harvest diaries kept by farmers throughout the harvest season as a less biased alternative to recall 

methods. Periodic data collection via mobile phone may be another less costly alternative to frequent 

enumerator visits (Dillon, 2012; cited in Carletto et al., 2015b). 

 

The cognitive psychology issues surrounding recall are also a problem for measuring labor inputs. Surveys 

typically have a long recall period, and require respondents to calculate average hours worked per day and 

days worked per week on the spot (for themselves and for other household members). Farm labor in particular 

is difficult to estimate because it is neither regular nor a salient event in farmers’ lives (Merfeld & Anderson, 

2015). Further, farmers may not have modern tools such as watches or mobile phones to accurately track hours 

worked, or may knowingly misreport hours worked for strategic reasons. In an ongoing study in Tanzania, De 

Weerdt (2015) compares agricultural labor estimates from a group surveyed at the end of the season to a group 

surveyed weekly. He reports that estimates of hours worked per day tended to be both regular and accurately 

estimated at the end of the season, while days worked per week was irregular and thus poorly estimated by 

averages, given that respondents often reported their modal number of days worked per week rather than the 

mean. This recall bias may lead to overestimation of labor hours per plot by as much as a factor of three, 

though the bias was less pronounced at the household than the individual level. Exaggerating labor may 

underestimate productivity (in measures that account for labor inputs) (De Weerdt, 2015). 

 

Problems faced by analysts 

In working with subnational-level yield data, analysts must make decisions about how to compensate for these 

shortcomings. Agriculture sample surveys such as the LSMS-ISA suffer from missing data, outlier observations 

that skew means while being difficult to verify, respondent error, and other flaws. Decisions about whether 

and how to impute missing data and how to address outlier data (by removing the top and bottom percentile in 

each calculation, by deleting outlier observations entirely, or by replacing outlier values with mean- or 

median-based figures) can greatly affect the results of the analysis. In yield regression analysis, there is a lack 

of consensus on the best regression techniques to address data limitations such as spatial autocorrelation 

(Lambert, Lowenberg-Deboer, & Bongiovanni, 2004; Tittonell, Shepherd, & Vanlauwe, 2008; Chu Su, 2011). 

Even the accepted experimental methods for technical efficiency and total factor productivity calculations are 

constantly challenged and improved (Arnade & Jones, 2011; Hoang & Coelli, 2011; Zúniga González, 2013; 

Block, 2014; O’Donnell, 2014).  

 

Productivity Measures Used in Recent Literature 

In peer-reviewed agricultural economics journals, authors use a variety of productivity measures as outcome 

variables. Yield is the most commonly used, but calculation methods such as whether yield is denominated by 

area planted or area harvested typically are not specified. Forty-four percent of the 25 articles on agricultural 
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productivity in developing countries published in 2015 used an undefined measure of yield.1 One article 

specified the use of yield by area planted, four others converted yield to sale value using production value per 

hectare, and the rest used technical efficiency, total factor productivity, a variety of measures of farm and 

non-farm income, and other measures including value added per land area and yield treatment effect less cost 

treatment effect. Figure 1 shows the productivity measures used in these 25 peer-reviewed articles. 

 

Figure 1. Productivity Measures Used in 2015 in Peer-Reviewed Agricultural Economics Journals 

 
Note: “Farm income” includes both gross and net measures of income. Some studies used more than one 

productivity measure. 

Sources: Agricultural Economics, American Journal of Agricultural Economics, Canadian Journal of 

Agricultural Economics, Food Policy, International Journal of Agricultural Economics, 2015 

 

Implications of Productivity Measurement Choices 

The choice of a productivity measure can have real implications for results and recommendations. As Anderson 

et al. (2015) show in their analysis of the 2008-09 Tanzania National Panel Study, conducting analysis based on 

yield by area harvested, which overestimates the yields of farmers who plant more area than they harvest, can 

lead to different recommendations for policies or interventions to raise productivity when compared to 

analyses of yield by area planted. Using regression analysis, variation in rice yield measured by area harvested 

was explained principally by soil fertility, while variation in yield by area planted was instead explained by 

rainfall levels and by access to markets and to hired labor. Further, estimates of yield by area harvested 

compared to yield by area planted were significantly different between respondents with daily consumption 

greater than $1.25/day per adult equivalent and those with daily consumption less than $1.25/day, suggesting 

that the choice of yield measure, and the corresponding estimates of the most important drivers of yield 

variation and hence likely effective investments, varies systematically by consumption level.2 Interventions 

intending to target the most vulnerable and least productive farmers – those most likely to lose area between 

                                                      
1 We surveyed articles with productivity as an outcome variable published in 2015 in Agricultural Economics, American 
Journal of Agricultural Economics, Canadian Journal of Agricultural Economics, Food Policy, and International Journal of 
Agricultural Economics. We searched European Journal of Agricultural Economics and found no relevant articles. We 
excluded articles on productivity measurement of processed agricultural products and on industrialized country agriculture. 
 
2 Significant at 90% confidence level, p=0.083. 
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planting and harvesting – might therefore be designed quite differently when based on analysis using the area 

planted measure rather than the area harvested measure.  

 

Some researchers are choosing to go beyond yield and include additional inputs and outputs as well as social 

and environmental costs and benefits in their measures of productivity, as well as attempting to estimate 

productivity gaps rather than yield gaps (Ball, Lovell, Luu, et al., 2004; Byerlee & Murgai, 2005; Di Falco & 

Chavas, 2006; World Bank, 2010; Hoang & Coelli, 2011; Zúniga González, 2013). Total factor productivity and 

net farm income may more appropriately proxy for farm family wellbeing than yield does, as farmers are likely 

to make choices that maximize income per dollar spent or minimize upfront investment rather than maximizing 

yield alone. There are no widely-accepted measures that take risk into account, even though controlling or 

mitigating risk is likely very important in crop mix and agriculture investment decisions for farmers without 

insurance, savings, or access to capital. Recent research on crop insurance has begun to measure yield risk 

(Huang, Wang, & Wang, 2015). Considering the strengths and weaknesses of each measure (as shown in Table 

2) together with the goals of the analysis allows analysts and policymakers to better understand the drivers of 

productivity growth, and thus to more effectively plan strategies that both increase productivity and reduce 

poverty.  

 

Table 2. Characteristics of Agricultural Productivity Measures 

 

Yield measure 
Counts land 
input and 

crop output 

Counts all 
agricultural 

inputs 

Counts all 
agricultural 

outputs 

Counts 
monetary 

costs to the 
farmer 

Counts 
monetary 

benefits to 
the farmer 

Counts social, 
environmental, 

or risk costs 
and benefits 

P
a
rt

ia
l 
fa

c
to

r 

m
e
a
su

re
s 

Yield by area 

harvested 
x   

 
  

Yield by area 

planted 
x   

 
  

Production value 
per area 

x   
 

x  

Technical 

efficiency 
x x  

 
  

T
o
ta

l 
fa

c
to

r 

m
e
a
su

re
s 

Total Factor 

Productivity 

(Malmquist 

index) 

x x x 

 

 
Environmental 

can be included 

Net farm income x x x x x  

 

 

 

 

 

 

Please direct comments or questions about this research to Principal Investigators Leigh Anderson and Travis 

Reynolds at epar.evans.uw@gmail.com.  
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