Year Published

Research Topics



Publication Date: 09/01/2022
Type: Research Brief

Key Takeaways

  • A survey of poverty indicators surfaced 139 candidates, of which 36 were ultimately selected for inclusion in the study based on indicator construction, use, and timeliness.

  • The selected 36 poverty indicators relied primarily on 26 data sources, mainly household surveys and administrative government data.

  • Most indicators relied on household survey data and used multidimensional indices to comprehensively measure poverty, aside from poverty line and poverty gap measures which relied exclusively on income and consumption.

  • Indicators or indicator components were typically based on quantitative estimates of income or consumption, although an increasing number of measurements are instead classifying households according to deprivation of assets, food, or access to services and basic infrastructure.

  • Overall, critics find that an emphasis on poverty line measurements has led to an incomplete understanding of poverty’s prevalence and trends over the last several decades (UN Special Rapporteur, 2020).

  • No single indicator dominates on considerations of reliability, dimensions, depth or intensity, comparability, etc., but rather each measure involves tradeoffs.

  • If the goal is to increase the utility of commonly used indicators, including those considering multiple dimensions of poverty, then investments focused on expanding the coverage, frequency, or scope of nationally representative household surveys is a necessary first step.

  • Making cross-country comparisons using any poverty indicator runs the risk of using a common metric based on different data sources and collected in different years that may not fully reflect a household’s welfare. Indices which include multiple subcomponents may be more holistic, but even less reliable as the number of components requiring data increases.


Suggested citation:

Landscape Review of Poverty Measures. EPAR Technical Report #424 (2022). Evans School of Public Policy & Governance, University of Washington. Retrieved <Day Month Year> from

EPAR Technical Report #354
Publication Date: 11/29/2018
Type: Research Brief

Precise agricultural statistics are necessary to track productivity and design sound agricultural policies. Yet, in settings where intercropping is prevalent, even crop yield can be challenging to measure. In a systematic survey of the literature on crop yield in low-income settings, we find that scholars specify how they estimate the yield denominator in under 10% of cases. Using household survey data from Tanzania, we consider four alternative methods of allocating land area on plots that contain multiple crops, and explore the implications of this measurement decision for analyses of maize and rice yield. We find that 64% of cultivated plots contain more than one crop, and average yield estimates vary with different methods of calculating area planted. This pattern is more pronounced for maize, which is more likely than rice to share a plot with other crops. The choice among area methods influences which of these two staple crops is found to be more calorie-productive per ha, as well as the extent to which fertilizer is expected to be profitable for maize production. Given that construction decisions can influence the results of analysis, we conclude that the literature would benefit from greater clarity regarding how yield is measured across studies.

EPAR Research Brief #360
Publication Date: 02/05/2018
Type: Research Brief

In this brief, we report on measures of economic growth, poverty and agricultural activity in Ethiopia. For each category of measure, we first describe different measurement approaches and present available time series data on selected indicators. We then use data from the sources listed below to discuss associations within and between these categories between 1994 and 2017.