Research Topics

EPAR TECHNICAL REPORT #353
Publication Date: 12/28/2020
Type: Literature Review
Abstract

Recent research has used typologies to classify rural households into categories such as “subsistence” versus “commercialized” as a means of targeting agricultural development interventions and tracking agricultural transformation. Following an approach proposed by Alliance for a Green Revolution in Africa, we examine patterns in two agricultural transformation hallmarks – commercialization of farm output, and diversification into non-farm income – among rural households in Ethiopia, Nigeria, and Tanzania from 2008-2015. We classify households into five smallholder farm categories based on commercialization and non-farm income levels (Subsistence, Pre-commercial, Transitioning, Specialized Commercial, and Diversified Commercial farms), as well as two non-smallholder categories (Largeholder farms and Non-farm households). We then summarize the share of households in each of these categories, examine geographic and demographic factors associated with different categories, and explore households’ movement across categories over time. We find a large amount of “churn” across categories, with most households moving to a different (more or less commercialized, more or less diversified) category across survey years. We also find many non-farm households become smallholder farmers – and vice versa – over time. Finally, we show that in many cases increases in farm household commercialization or diversification rates actually reflect decreased total farm production, or decreased total income (i.e., declines in the denominators of the agricultural transformation metrics), suggesting a potential loss of rural household welfare even in the presence of “positive” trends in transformation indicators. Findings underscore challenges with using common macro-level indicators to target development efforts and track progress at the household level in rural agrarian communities.

EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis
Abstract

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR Technical Report #335
Publication Date: 11/21/2017
Type: Data Analysis
Abstract
EPAR has developed Stata do.files for the construction of a set of agricultural development indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA). We are sharing our code and documenting our construction decisions both to facilitate analyses of these rich datasets and to make estimates of relevant indicators available to a broader audience of potential users. 
Code, Code, Code, Code
EPAR Technical Report #317
Publication Date: 11/16/2017
Type: Data Analysis
Abstract

In this report we analyze three waves nationally-representative household survey data from Kenya, Uganda, Tanzania, Nigeria, Pakistan, Bangladesh, India, and Indonesia to explore sociodemographic and economic factors associated with mobile money adoption, awareness, and use across countries and over time. Our findings indicate that to realize the potential of digital financial services to reach currently unbanked populations and increase financial inclusion, particular attention needs to be paid to barriers faced by women in accessing mobile money. While policies and interventions to promote education, employment, phone ownership, and having a bank account may broadly help to increase mobile money adoption and use, potentially bringing in currently unbanked populations, specific policies targeting women may be needed to close current gender gaps.

Code
EPAR Technical Report #356
Publication Date: 10/31/2017
Type: Data Analysis
Abstract

According to AGRA's 2017 Africa Agriculture Status Report, smallholder farmers make up to about 70% of the population in Africa. The report finds that 500 million smallholder farms around the world provide livelihoods for more than 2 billion people and produce about 80% of the food in sub-Saharan Africa and Asia. Many development interventions and policies therefore target smallholder farm households with the goals of increasing their productivity and promoting agricultural transformation. Of particular interest for agricultural transformation is the degree to which smallholder farm households are commercializating their agricultural outputs, and diversifying their income sources away from agriculture. In this project, EPAR uses data from the World Bank's Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA) to analyze and compare characteristics of smallholder farm households at different levels of crop commercialization and reliance on farm income, and to evaluate implications of using different criteria for defining "smallholder" households for conclusions on trends in agricultural transformation for those households.

Code
EPAR Technical Report #357
Publication Date: 08/01/2017
Type: Literature Review
Abstract

Land tenure refers to a set of land rights and land governance institutions which can be informal (customary, traditional) or formal (legally recognized), that define relationships between people and land and natural resources (FAO, 2002). These land relationships may include, but are not limited to, rights to use land for cultivation and production, rights to control how land should be used including for cultivation, resource extraction, conservation, or construction, and rights to transfer – through sale, gift, or inheritance – those land use and control rights (FAO, 2002). In this project, we review 38 land tenure technologies currently being applied to support land tenure security across the globe, and calculate summary statistics for indicators of land tenure in Tanzania and Ethiopia.

Code
EPAR Technical Report #261
Publication Date: 06/14/2016
Type: Data Analysis
Abstract

Mobile technology is associated with a variety of positive development and social outcomes, and as a result reaching the “final frontier” of uncovered populations is an important policy issue. We use proprietary 2012 data on mobile coverage from Collins Bartholomew to estimate the proportion of the population living in areas without mobile coverage globally and in selected regions and countries, and use spatial analysis to identify where these populations are concentrated. We then compare our coverage estimates to data from previous years and estimates from the most recent literature to provide a picture of recent trends in coverage expansion, considering separately the trends for coverage of urban and rural populations. We find that mobile coverage expansion rates are slowing, as easier to reach urban populations in developing countries are now almost entirely covered and the remaining uncovered populations are more dispersed in rural areas and therefore more difficult and costly to reach. This analysis of mobile coverage trends was the focus of an initial report on mobile coverage estimates. In a follow-up paper prepared for presentation at the 2016 APPAM International Conference, we investigate the assumption that levels of mobile network coverage are related to the degree of market liberalization at the country level.

EPAR Research Brief #332
Publication Date: 02/26/2016
Type: Literature Review
Abstract

Household survey data are a key source of information for policy-makers at all levels. In developing countries, household data are commonly used to target interventions and evaluate progress towards development goals. The World Bank’s Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA) are a particularly rich source of nationally-representative panel data for six Sub-Saharan African countries: Ethiopia, Malawi, Niger, Nigeria, Tanzania, and Uganda. To help understand how these data are used, EPAR reviewed the existing literature referencing the LSMS-ISA and identified 415 publications, working papers, reports, and presentations with primary research based on LSMS-ISA data. We find that use of the LSMS-ISA has been increasing each year since the first survey waves were made available in 2009, with several universities, multilateral organizations, government offices, and research groups across the globe using the data to answer questions on agricultural productivity, farm management, poverty and welfare, nutrition, and several other topics.

EPAR Technical Report #269
Publication Date: 05/21/2014
Type: Literature Review
Abstract

The commercial alcohol industry in Africa may provide opportunities to increase market access and incomes for smallholder farmers by increasing access to agriculture-alcohol value chains. Despite the benefits of increased market opportunities, the high costs to human health and social welfare from increased alcohol use and alcoholism could contribute to a net loss for society. To better understand the tradeoffs between increased market access for smallholders and societal costs associated with harmful alcohol consumption, this paper provides an inventory of the societal costs of alcohol in Sub-Saharan Africa (SSA). We examine direct costs associated with addressing harmful effects of alcohol and treating alcohol-related illnesses, as well as indirect costs associated with the goods and services that are not delivered as a consequence of drinking and its impact on personal productivity. We identified resources using Google Scholar and the University of Washington libraries, and utilized the Global Burden of Disease (GBD) database by the Institute for Health Metrics and Evaluation (IHME) and the World Health Organization’s Global Information System on Alcohol and Health (GISAH) database. We also utilized FAOSTAT to retrieve raw data on national-level alcohol production and export statistics. We find that hazardous alcohol use contributes to early mortality and morbidity, loss of productivity, property damage, and other social costs and harms for drinkers and those around them. Drinking also affects vulnerable segments of the population disproportionately. Policymakers, local authorities, and donor agencies can use the information presented in this paper to plan and prepare for the higher consumption levels and subsequent social costs that may follow through agricultural development and economic growth in the region.  

EPAR Research Brief #242
Publication Date: 01/08/2014
Type: Data Analysis
Abstract

The purpose of this analysis is to provide a measure of marketable surplus of maize in Tanzania. We proxy marketable surplus with national-level estimates of total maize sold, presumably the surplus for maize producing and consuming households. We also provide national level estimates of total maize produced and estimate “average prices” for Tanzania which allows this quantity to be expressed as an estimate of the value of marketable surplus. The analysis uses the Tanzanian National Panel Survey (TNPS) LSMS – ISA which is a nationally representative panel survey, for the years 2008/2009 and 2010/2011. A spreadsheet provides our estimates for different subsets of the sample and using different approaches to data cleaning and weighting. The total number of households for Tanzania was estimated with linear extrapolation based on the Tanzanian National Bureau of Statistics for the years 2002 and 2012. The weighted proportions of maize-producing and maize-selling households were multiplied to the national estimate of total households. This estimate of total Tanzanian maize-selling and maize-producing households was then multiplied by the average amount sold and by the average amount produced respectively to obtain national level estimates of total maize sold and total maize produced in 2009 and 2011.