Research Topics

EPAR TECHNICAL REPORT #411
Publication Date: 05/24/2021
Type: Data Analysis
Abstract

In this database, we compile current project data from three major international financial institutions (or IFIs) - the World Bank, African Development Bank, and the International Fund for Agricultural Development - to understand

  1. how much countries are borrowing from each institution. and
  2. how much of that funding is devoted to small scale producer agriculture.

We begin by gathering publicly accessible data through downloads and webscraping Python and R scripts. These data are then imported into the statistical software program, Stata, for cleaning and export to Excel for analysis. This data set contains rich information about current projects (active, in implementation, or recently approved), such as project title, project description, borrowing ministry, commitment amount, and sector. We then code relevant projects into two categories: On Farm (projects pertaining directly to small scale producer agriculture) and Rural/Agricultural Economies (inclusive of On Farm, but broader to include projects that impact community livelihoods and wellbeing). Finally, we annualize and aggregate these coded projects by IFI and then by country for analysis. Bilateral funding, government expenditures on agriculture, and development indicators are also included as supporting data to add context to a country's progress towards agricultural transformation.

The primary utility of this dataset is having all projects collected in a single spreadsheet where it is possible to search by key terms (e.g. commodity, market, financial, value chain) for lending by IFI and country, and to get some level of project detail.  We have categorized projects by lending category (e.g. irrigation, livestock, agricultural development, research/extention/training) to aggregate across IFI so that the total funding for any country is easier to find. For example, Ethiopia and Nigeria receive the most total lending from these IFIs (though not on a per capita basis), with each country receiving more than $3 billion per year on average. Ethiopia receives the most lending devoted to On Farm projects, roughly $585 million per year.  Overall, these data provide a snapshot of the magnitude and direction of these IFI's lending over the past several years to sub-Saharan Africa. 

Code
EPAR TECHNICAL REPORT #353
Publication Date: 12/28/2020
Type: Literature Review
Abstract

Recent research has used typologies to classify rural households into categories such as “subsistence” versus “commercialized” as a means of targeting agricultural development interventions and tracking agricultural transformation. Following an approach proposed by Alliance for a Green Revolution in Africa, we examine patterns in two agricultural transformation hallmarks – commercialization of farm output, and diversification into non-farm income – among rural households in Ethiopia, Nigeria, and Tanzania from 2008-2015. We classify households into five smallholder farm categories based on commercialization and non-farm income levels (Subsistence, Pre-commercial, Transitioning, Specialized Commercial, and Diversified Commercial farms), as well as two non-smallholder categories (Largeholder farms and Non-farm households). We then summarize the share of households in each of these categories, examine geographic and demographic factors associated with different categories, and explore households’ movement across categories over time. We find a large amount of “churn” across categories, with most households moving to a different (more or less commercialized, more or less diversified) category across survey years. We also find many non-farm households become smallholder farmers – and vice versa – over time. Finally, we show that in many cases increases in farm household commercialization or diversification rates actually reflect decreased total farm production, or decreased total income (i.e., declines in the denominators of the agricultural transformation metrics), suggesting a potential loss of rural household welfare even in the presence of “positive” trends in transformation indicators. Findings underscore challenges with using common macro-level indicators to target development efforts and track progress at the household level in rural agrarian communities.

EPAR TECHNICAL REPORT #393
Publication Date: 11/22/2019
Type: Research Brief
Abstract

While literature on achieving Inclusive Agricultural Transformation (IAT) through input market policies is relatively robust, literature on the effect of output market policies on IAT is rarer. We conduct a selective literature review of output market policies in low- and middle-income countries to assess their influence on IAT and find that outcomes are mixed across all policy areas. We also review indicators used to measure successful IAT,  typologies of market institutions involved in IAT, and agricultural policies and maize yield trends in East Africa. This report details our findings on these connected, yet somewhat disparate elements of IAT to shed more light on a topic that has not been the primary focus of the literature thus far.

EPAR Technical Report #349
Publication Date: 11/30/2017
Type: Literature Review
Abstract

Donor countries and multilateral organizations may pursue multiple goals with foreign aid, including supporting low-income country development for strategic/security purposes (national security, regional political stability) and for short-and long-term economic interests (market development and access, local and regional market stability). While the literature on the effectiveness of aid in supporting progress on different indicators of country development is inconclusive, donors are interested in evidence that aid funding is not permanent but rather contributes to a process by which recipient countries develop to a point that they are economically self-sufficient. In this report, we review the literature on measures of country self-sufficiency and descriptive evidence from illustrative case studies to explore conditions associated with transitions toward self-sufficiency in certain contexts.

  

EPAR Technical Report #335
Publication Date: 11/21/2017
Type: Data Analysis
Abstract
EPAR has developed Stata do.files for the construction of a set of agricultural development indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA). We are sharing our code and documenting our construction decisions both to facilitate analyses of these rich datasets and to make estimates of relevant indicators available to a broader audience of potential users. 
Code, Code, Code, Code
EPAR Technical Report #356
Publication Date: 10/31/2017
Type: Data Analysis
Abstract

According to AGRA's 2017 Africa Agriculture Status Report, smallholder farmers make up to about 70% of the population in Africa. The report finds that 500 million smallholder farms around the world provide livelihoods for more than 2 billion people and produce about 80% of the food in sub-Saharan Africa and Asia. Many development interventions and policies therefore target smallholder farm households with the goals of increasing their productivity and promoting agricultural transformation. Of particular interest for agricultural transformation is the degree to which smallholder farm households are commercializating their agricultural outputs, and diversifying their income sources away from agriculture. In this project, EPAR uses data from the World Bank's Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA) to analyze and compare characteristics of smallholder farm households at different levels of crop commercialization and reliance on farm income, and to evaluate implications of using different criteria for defining "smallholder" households for conclusions on trends in agricultural transformation for those households.

 

Code
EPAR Technical Report #329
Publication Date: 05/31/2017
Type: Literature Review
Abstract

This research considers how public good characteristics of different types of research and development (R&D) and the motivations of different providers of R&D funding affect the relative advantages of alternative funding sources. We summarize the public good characteristics of R&D for agriculture in general and for commodity and subsistence crops in particular, as well as R&D for health in general and for neglected diseases in particular, with a focus on Sub-Saharan Africa and South Asia. Finally, we present rationales for which funders are predicted to fund which R&D types based on these funder and R&D characteristics. We then compile available statistics on funding for agricultural and health R&D from private, public and philanthropic sources, and compare trends in funding from these sources against expectations. We find private agricultural R&D spending focuses on commodity crops (as expected). However contrary to expectations we find public and philanthropic spending also goes largely towards these same crops rather than staples not targeted by private funds. For health R&D private funders similarly concentrate on diseases with higher potential financial returns. However unlike in agricultural R&D, in health R&D we observe some specialization across funders – especially for neglected diseases R&D - consistent with funders’ expected relative advantages.

EPAR Research Brief #344
Publication Date: 08/10/2016
Type: Research Brief
Abstract

This brief presents an overview of EPAR’s previous research related to gender. We first present our key takeaways related to labor and time use, technology adoption, agricultural production, control over income and assets, health and nutrition, and data collection. We then provide a brief overview of each previous research project related to gender along with gender-related findings, starting with the most recent project. Many of the gender-related findings draw from other sources; please see the full documents for references. Reports available on EPAR’s website are hyperlinked in the full brief. 

EPAR Research Brief #332
Publication Date: 02/26/2016
Type: Literature Review
Abstract

Household survey data are a key source of information for policy-makers at all levels. In developing countries, household data are commonly used to target interventions and evaluate progress towards development goals. The World Bank’s Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA) are a particularly rich source of nationally-representative panel data for six Sub-Saharan African countries: Ethiopia, Malawi, Niger, Nigeria, Tanzania, and Uganda. To help understand how these data are used, EPAR reviewed the existing literature referencing the LSMS-ISA and identified 415 publications, working papers, reports, and presentations with primary research based on LSMS-ISA data. We find that use of the LSMS-ISA has been increasing each year since the first survey waves were made available in 2009, with several universities, multilateral organizations, government offices, and research groups across the globe using the data to answer questions on agricultural productivity, farm management, poverty and welfare, nutrition, and several other topics.

EPAR Research Brief #320
Publication Date: 01/29/2016
Type: Literature Review
Abstract

This brief provides a summary of background research for future aid-related EPAR projects. We first review prominent measures of aid, examining the definition and scope of Official Development Assistance (ODA) as well as common criticisms and alternatives to this measurement. We also provide a summary of current research on bilateral and multilateral aid allocation trends. The aid allocation literature broadly concludes that donor countries target aid based on both the needs of recipients and on strategic interests, but that aid allocation criteria differ by donor and by type of aid. Finally, we summarize current aid effectiveness literature and key challenges in exploring the impact of aid. A number of challenges in determining the effectiveness of aid were common in the literature, including the micro-macro paradox, difficulties in identifying causal mechanisms and direction of causality, and data limitations.