Year Published
- 2008 (0)
- 2009 (0)
- 2010 (0)
- 2011 (0)
- 2012 (0)
- 2013 (0)
- 2014 (0)
- 2015 (0)
- 2016 (0)
- 2017 (0)
- 2018 (1) Apply 2018 filter
- 2019 (0)
- 2020 (0)
- 2021 (1) Apply 2021 filter
Research Topics
Populations
- Countries/Governments (1) Apply Countries/Governments filter
- Rural Populations (0)
- Smallholder Farmers (0)
- Women (0)
Types of Research
- Data Analysis (3) Apply Data Analysis filter
- Literature Review (0)
- Portfolio Review (1) Apply Portfolio Review filter
- (-) Remove Research Brief filter Research Brief
Geography
- East Africa Region and Selected Countries (1) Apply East Africa Region and Selected Countries filter
- Global (1) Apply Global filter
- South Asia Region and Selected Countries (0)
- Southern Africa Region and Selected Countries (0)
- Sub-Saharan Africa (0)
- West Africa Region and Selected Countries (0)
Dataset
- ASTI (0)
- FAOSTAT (0)
- Farmer First (0)
- LSMS & LSMS-ISA (1) Apply LSMS & LSMS-ISA filter
- (-) Remove Other Datasets filter Other Datasets
Current search
- (-) Remove Research Brief filter Research Brief
- (-) Remove Household Well-Being & Equity filter Household Well-Being & Equity
- (-) Remove Other Datasets filter Other Datasets
- (-) Remove Poverty filter Poverty
Key Takeaways
-
A survey of poverty indicators surfaced 139 candidates, of which 36 were ultimately selected for inclusion in the study based on indicator construction, use, and timeliness.
-
The selected 36 poverty indicators relied primarily on 26 data sources, mainly household surveys and administrative government data.
-
Most indicators relied on household survey data and used multidimensional indices to comprehensively measure poverty, aside from poverty line and poverty gap measures which relied exclusively on income and consumption.
-
Indicators or indicator components were typically based on quantitative estimates of income or consumption, although an increasing number of measurements are instead classifying households according to deprivation of assets, food, or access to services and basic infrastructure.
-
Overall, critics find that an emphasis on poverty line measurements has led to an incomplete understanding of poverty’s prevalence and trends over the last several decades (UN Special Rapporteur, 2020).
-
No single indicator dominates on considerations of reliability, dimensions, depth or intensity, comparability, etc., but rather each measure involves tradeoffs.
-
If the goal is to increase the utility of commonly used indicators, including those considering multiple dimensions of poverty, then investments focused on expanding the coverage, frequency, or scope of nationally representative household surveys is a necessary first step.
-
Making cross-country comparisons using any poverty indicator runs the risk of using a common metric based on different data sources and collected in different years that may not fully reflect a household’s welfare. Indices which include multiple subcomponents may be more holistic, but even less reliable as the number of components requiring data increases.
Suggested citation:
Landscape Review of Poverty Measures. EPAR Technical Report #424 (2022). Evans School of Public Policy & Governance, University of Washington. Retrieved <Day Month Year> from https://epar.evans.uw.edu/research
In this brief, we report on measures of economic growth, poverty and agricultural activity in Ethiopia. For each category of measure, we first describe different measurement approaches and present available time series data on selected indicators. We then use data from the sources listed below to discuss associations within and between these categories between 1994 and 2017.