Year Published
- 2008 (0)
- 2009 (0)
- 2010 (0)
- 2011 (3) Apply 2011 filter
- 2012 (7) Apply 2012 filter
- (-) Remove 2013 filter 2013
- 2014 (1) Apply 2014 filter
- 2015 (2) Apply 2015 filter
- 2016 (2) Apply 2016 filter
- 2017 (5) Apply 2017 filter
- 2018 (0)
- 2019 (0)
- 2020 (1) Apply 2020 filter
- 2021 (0)
Research Topics
Populations
- Countries/Governments (0)
- Rural Populations (0)
- Smallholder Farmers (2) Apply Smallholder Farmers filter
- Women (0)
Types of Research
- Data Analysis (4) Apply Data Analysis filter
- Literature Review (0)
- Portfolio Review (0)
- Research Brief (1) Apply Research Brief filter
Geography
- East Africa Region and Selected Countries (4) Apply East Africa Region and Selected Countries filter
- Global (0)
- South Asia Region and Selected Countries (0)
- Southern Africa Region and Selected Countries (0)
- Sub-Saharan Africa (0)
- West Africa Region and Selected Countries (0)
Dataset
- ASTI (0)
- FAOSTAT (3) Apply FAOSTAT filter
- (-) Remove Farmer First filter Farmer First
- (-) Remove LSMS & LSMS-ISA filter LSMS & LSMS-ISA
- Other Datasets (0)
Current search
- (-) Remove 2013 filter 2013
- (-) Remove Aid & Other Development Finance filter Aid & Other Development Finance
- (-) Remove Agricultural Inputs & Farm Management filter Agricultural Inputs & Farm Management
- (-) Remove Farmer First filter Farmer First
- (-) Remove Technology Adoption filter Technology Adoption
- (-) Remove LSMS & LSMS-ISA filter LSMS & LSMS-ISA
The FAO defines a farming system as “a population of individual farm systems that have broadly similar resource bases, enterprise patterns, household livelihoods and constraints, and for which similar development strategies and interventions would be appropriate. Depending on the scale of the analysis, a farming system can encompass a few dozen or many millions of households.” We use the farming systems as defined by the Food and Agriculture Organization (FAO) for Sub-Saharan Africa. The FAO identifies eight main farming systems in Tanzania 1) maize mixed, 2) root crop, 3) coastal artisanal fishing, 4) highland perennial, 5) agro-pastoral millet/sorghum, 6) tree crop, 7) highland temperate mixed, and 8) pastoral. This analysis uses data from the Tanzanian National Panel Survey (TZNPS) LSMS – ISA to provide a comparison of farming systems throughout Tanzania. The TZNPS is a nationally-representative panel survey that includes households from seven of the eight FAO farming systems with only the smallest farming system, pastoral, lacking any representation.
In this brief we analyze patterns of intercropping and differences between intercropped and monocropped plots among smallholder farmers in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). Intercropping is a planting strategy in which farmers cultivate at least two crops simultaneously on the same plot of land. In this brief we define intercropped plots as those for which respondents answered “yes” to the question “Was cultivation intercropped?” We define “intercropping households” as those households that intercropped at least one plot at any point during the year in comparison to households that did not intercrop any plots. The analysis reveals few significant, consistent productivity benefits to intercropping as currently practiced. Intercropped plots are not systematically more productive (in terms of value produced) than monocropped plots. The most commonly cited reason for intercropping was to provide a substitute crop in the case of crop failure. This suggests that food and income security are primary concerns for smallholder farmers in Tanzania. A separate appendix includes the details for our analyses.
Local crop diversity and crop cultivation patterns among smallholder farmers have implications for two important elements of the design of agricultural interventions in developing countries. First, crop cultivation patterns may aid in targeting by helping to identify geographic areas where improved seed and other productivity enhancing technologies will be most easily applicable. Second, these patterns may help to identify potential unintended consequences of crop interventions focused on a single crop (e.g. maize). This report analyzes the distribution of crop diversity and crop cultivation patterns, and factors that can lead to changes in these patterns among smallholder farmers in Tanzania with a focus on regional patterns of crop cultivation and changes in these patterns over time, the factors that affect crop diversity and changes in crop diversity, and the level of substitutability between crops grown by smallholder farmers. All analysis is based on the Tanzania National Panel Survey (TNPS) datasets from 2008 and 2010. The paper is structured as follows. Section I provides a description of regional patterns of crop cultivation and crop diversity between the two years of the panel. Section II presents background on the theoretical factors affecting crop choice, and presents our findings on the results of a multivariate analysis on the factors contributing to crop diversity. Finally, Section 3 provides a preliminary analysis of the level of substitutability between cereal crop of importance in Tanzania (maize, rice and sorghum/millet) and also between these cereal crops and non-cereal crops.
This brief present our analysis of sorghum and millet cultivation in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). In the 2007-2008 long and short rainy seasons, 13% of Tanzanian farming households cultivated sorghum and 6% cultivated millet, making these crops some of the least frequently cultivated priority crops in Tanzania. As a result, detailed analysis and determining statistical significance was limited by the low number of observations, particularly of millet. While sorghum and millet are often grouped together, our results suggest that in Tanzania there were differences among the households that cultivated these distinct crops. A separate appendix includes additional detail on our analyses.
Consumer attitudes are a key component in private sector market segmentation. Knowledge about consumers’ tastes can lead to better product design and more effective communication with target markets. Similarly, evidence suggests that farmers’ attitudes influence whether they adopt productivity-increasing technologies. Using consumer insights from the private sector, agricultural intervention programs can use market research, product development, and communication strategies to better understand farmers as consumers and best target interventions. This brief provides an overview of how farmers' attitudes affect their willingness to adopt new technology, and how knowledge of farmer attitudes can improve program design and implementation.