Research Topics

EPAR Technical Report #335
Publication Date: 11/21/2017
Type: Data Analysis
Abstract
EPAR has developed Stata do.files for the construction of a set of agricultural development indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA). We are sharing our code and documenting our construction decisions both to facilitate analyses of these rich datasets and to make estimates of relevant indicators available to a broader audience of potential users. 
Code, Code, Code, Code
EPAR Technical Report #356
Publication Date: 10/31/2017
Type: Data Analysis
Abstract

According to AGRA's 2017 Africa Agriculture Status Report, smallholder farmers make up to about 70% of the population in Africa. The report finds that 500 million smallholder farms around the world provide livelihoods for more than 2 billion people and produce about 80% of the food in sub-Saharan Africa and Asia. Many development interventions and policies therefore target smallholder farm households with the goals of increasing their productivity and promoting agricultural transformation. Of particular interest for agricultural transformation is the degree to which smallholder farm households are commercializating their agricultural outputs, and diversifying their income sources away from agriculture. In this project, EPAR uses data from the World Bank's Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA) to analyze and compare characteristics of smallholder farm households at different levels of crop commercialization and reliance on farm income, and to evaluate implications of using different criteria for defining "smallholder" households for conclusions on trends in agricultural transformation for those households.

Code
EPAR Technical Report #341
Publication Date: 08/03/2017
Type:
Abstract
Data on public expenditures on agriculture are not systematically collected in any one database. Rather, a variety of sources collect and publish data on certain aspects of agricultural public expenditures. These sources vary in their data collection methods, their frequency of data collection, and the specific expenditures they report on. We collected data on agricultural public expenditures and conducted preliminary analyses for four countries: India (with a focus on Bihar, Odisha, and Uttar Pradesh), Ethiopia, Nigeria, and Tanzania. The data are disaggregated in a variety of ways depending on the source, but we include disaggregated data where available comparing planned or budgeted vs. actual spending, government vs. donor spending, soending by activity or funding area, and spending by commodity or value chain activity. Our goals are to facilitate further analysis of trends in agricultural public expenditures across countries and over time, and to highlight gaps and differences in data sources.
EPAR Technical Report #329
Publication Date: 05/31/2017
Type: Literature Review
Abstract

This research considers how public good characteristics of different types of research and development (R&D) and the motivations of different providers of R&D funding affect the relative advantages of alternative funding sources. We summarize the public good characteristics of R&D for agriculture in general and for commodity and subsistence crops in particular, as well as R&D for health in general and for neglected diseases in particular, with a focus on Sub-Saharan Africa and South Asia. Finally, we present rationales for which funders are predicted to fund which R&D types based on these funder and R&D characteristics. We then compile available statistics on funding for agricultural and health R&D from private, public and philanthropic sources, and compare trends in funding from these sources against expectations. We find private agricultural R&D spending focuses on commodity crops (as expected). However contrary to expectations we find public and philanthropic spending also goes largely towards these same crops rather than staples not targeted by private funds. For health R&D private funders similarly concentrate on diseases with higher potential financial returns. However unlike in agricultural R&D, in health R&D we observe some specialization across funders – especially for neglected diseases R&D - consistent with funders’ expected relative advantages.

EPAR Technical Report #331
Publication Date: 06/20/2016
Type: Data Analysis
Abstract

Labor is one of the most productive assets for many rural households in developing countries. Despite the importance of labor—and time use more generally—little research has empirically examined the quality of time-use data in household surveys. Many household surveys rely on respondent recall, the reliability of which may decrease as recall length increases. In addition, respondents often report on time allocation for the entire household, which they may not know or recall as clearly as their own time allocation. Finally, simultaneous activities such as tending children while preparing dinner, may lead to the systematic underestimation of certain activities, particularly those that tend to be performed by women. This paper examines whether the identity of the survey respondent affects estimates of time allocation within the household. Drawing on the Ugandan LSMS-ISA household survey, we find that individuals responding for themselves report higher levels of time use over the previous week than when responding for other household members. Moreover, male respondents tend to underreport time allocation for females over the age of 15 as compared to female respondents, especially time spent on domestic activities. In addition, an analysis of the effects of two economics shocks—having a baby and floods or droughts—suggests that the identity of the respondent can affect substantive conclusions about the effects of shocks on household time use.

 

EPAR Research Brief #332
Publication Date: 02/26/2016
Type: Literature Review
Abstract

Household survey data are a key source of information for policy-makers at all levels. In developing countries, household data are commonly used to target interventions and evaluate progress towards development goals. The World Bank’s Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA) are a particularly rich source of nationally-representative panel data for six Sub-Saharan African countries: Ethiopia, Malawi, Niger, Nigeria, Tanzania, and Uganda. To help understand how these data are used, EPAR reviewed the existing literature referencing the LSMS-ISA and identified 415 publications, working papers, reports, and presentations with primary research based on LSMS-ISA data. We find that use of the LSMS-ISA has been increasing each year since the first survey waves were made available in 2009, with several universities, multilateral organizations, government offices, and research groups across the globe using the data to answer questions on agricultural productivity, farm management, poverty and welfare, nutrition, and several other topics.

EPAR Research Brief #242
Publication Date: 01/08/2014
Type: Data Analysis
Abstract

The purpose of this analysis is to provide a measure of marketable surplus of maize in Tanzania. We proxy marketable surplus with national-level estimates of total maize sold, presumably the surplus for maize producing and consuming households. We also provide national level estimates of total maize produced and estimate “average prices” for Tanzania which allows this quantity to be expressed as an estimate of the value of marketable surplus. The analysis uses the Tanzanian National Panel Survey (TNPS) LSMS – ISA which is a nationally representative panel survey, for the years 2008/2009 and 2010/2011. A spreadsheet provides our estimates for different subsets of the sample and using different approaches to data cleaning and weighting. The total number of households for Tanzania was estimated with linear extrapolation based on the Tanzanian National Bureau of Statistics for the years 2002 and 2012. The weighted proportions of maize-producing and maize-selling households were multiplied to the national estimate of total households. This estimate of total Tanzanian maize-selling and maize-producing households was then multiplied by the average amount sold and by the average amount produced respectively to obtain national level estimates of total maize sold and total maize produced in 2009 and 2011.

EPAR Research Brief #216
Publication Date: 08/08/2013
Type: Data Analysis
Abstract

In this brief we analyze patterns of intercropping and differences between intercropped and monocropped plots among smallholder farmers in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). Intercropping is a planting strategy in which farmers cultivate at least two crops simultaneously on the same plot of land. In this brief we define intercropped plots as those for which respondents answered “yes” to the question “Was cultivation intercropped?” We define “intercropping households” as those households that intercropped at least one plot at any point during the year in comparison to households that did not intercrop any plots. The analysis reveals few significant, consistent productivity benefits to intercropping as currently practiced. Intercropped plots are not systematically more productive (in terms of value produced) than monocropped plots. The most commonly cited reason for intercropping was to provide a substitute crop in the case of crop failure. This suggests that food and income security are primary concerns for smallholder farmers in Tanzania. A separate appendix includes the details for our analyses.

EPAR Technical Report #237
Publication Date: 06/09/2013
Type: Data Analysis
Abstract

Local crop diversity and crop cultivation patterns among smallholder farmers have implications for two important elements of the design of agricultural interventions in developing countries. First, crop cultivation patterns may aid in targeting by helping to identify geographic areas where improved seed and other productivity enhancing technologies will be most easily applicable. Second, these patterns may help to identify potential unintended consequences of crop interventions focused on a single crop (e.g. maize). This report analyzes the distribution of crop diversity and crop cultivation patterns, and factors that can lead to changes in these patterns among smallholder farmers in Tanzania with a focus on regional patterns of crop cultivation and changes in these patterns over time, the factors that affect crop diversity and changes in crop diversity, and the level of substitutability between crops grown by smallholder farmers. All analysis is based on the Tanzania National Panel Survey (TNPS) datasets from 2008 and 2010. The paper is structured as follows. Section I provides a description of regional patterns of crop cultivation and crop diversity between the two years of the panel. Section II presents background on the theoretical factors affecting crop choice, and presents our findings on the results of a multivariate analysis on the factors contributing to crop diversity. Finally, Section 3 provides a preliminary analysis of the level of substitutability between cereal crop of importance in Tanzania (maize, rice and sorghum/millet) and also between these cereal crops and non-cereal crops.

EPAR Research Brief #224
Publication Date: 02/04/2013
Type: Data Analysis
Abstract

This brief present our analysis of sorghum and millet cultivation in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA).  In the 2007-2008 long and short rainy seasons, 13% of Tanzanian farming households cultivated sorghum and 6% cultivated millet, making these crops some of the least frequently cultivated priority crops in Tanzania. As a result, detailed analysis and determining statistical significance was limited by the low number of observations, particularly of millet. While sorghum and millet are often grouped together, our results suggest that in Tanzania there were differences among the households that cultivated these distinct crops. A separate appendix includes additional detail on our analyses.