Year Published

Publication Date: 05/24/2021
Type: Data Analysis

In this database, we compile current project data from three major international financial institutions (or IFIs) - the World Bank, African Development Bank, and the International Fund for Agricultural Development - to understand

  1. how much countries are borrowing from each institution. and
  2. how much of that funding is devoted to small scale producer agriculture.

We begin by gathering publicly accessible data through downloads and webscraping Python and R scripts. These data are then imported into the statistical software program, Stata, for cleaning and export to Excel for analysis. This data set contains rich information about current projects (active, in implementation, or recently approved), such as project title, project description, borrowing ministry, commitment amount, and sector. We then code relevant projects into two categories: On Farm (projects pertaining directly to small scale producer agriculture) and Rural/Agricultural Economies (inclusive of On Farm, but broader to include projects that impact community livelihoods and wellbeing). Finally, we annualize and aggregate these coded projects by IFI and then by country for analysis. Bilateral funding, government expenditures on agriculture, and development indicators are also included as supporting data to add context to a country's progress towards agricultural transformation.

The primary utility of this dataset is having all projects collected in a single spreadsheet where it is possible to search by key terms (e.g. commodity, market, financial, value chain) for lending by IFI and country, and to get some level of project detail.  We have categorized projects by lending category (e.g. irrigation, livestock, agricultural development, research/extention/training) to aggregate across IFI so that the total funding for any country is easier to find. For example, Ethiopia and Nigeria receive the most total lending from these IFIs (though not on a per capita basis), with each country receiving more than $3 billion per year on average. Ethiopia receives the most lending devoted to On Farm projects, roughly $585 million per year.  Overall, these data provide a snapshot of the magnitude and direction of these IFI's lending over the past several years to sub-Saharan Africa. 

EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR Technical Report #335
Publication Date: 11/21/2017
Type: Data Analysis
EPAR has developed Stata do.files for the construction of a set of agricultural development indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA). We are sharing our code and documenting our construction decisions both to facilitate analyses of these rich datasets and to make estimates of relevant indicators available to a broader audience of potential users. 
Code, Code, Code, Code
EPAR Research Brief #205
Publication Date: 01/29/2013
Type: Research Brief

Consumer attitudes are a key component in private sector market segmentation. Knowledge about consumers’ tastes can lead to better product design and more effective communication with target markets. Similarly, evidence suggests that farmers’ attitudes influence whether they adopt productivity-increasing technologies. Using consumer insights from the private sector, agricultural intervention programs can use market research, product development, and communication strategies to better understand farmers as consumers and best target interventions. This brief provides an overview of how farmers' attitudes affect their willingness to adopt new technology, and how knowledge of farmer attitudes can improve program design and implementation.