Year Published
- 2008 (3) Apply 2008 filter
- 2009 (13) Apply 2009 filter
- 2010 (14) Apply 2010 filter
- 2011 (14) Apply 2011 filter
- 2012 (6) Apply 2012 filter
- 2013 (7) Apply 2013 filter
- 2014 (6) Apply 2014 filter
- 2015 (6) Apply 2015 filter
- 2016 (10) Apply 2016 filter
- 2017 (8) Apply 2017 filter
- 2018 (2) Apply 2018 filter
- 2019 (2) Apply 2019 filter
- 2020 (0)
- 2021 (0)
Research Topics
Populations
Types of Research
Geography
- East Africa Region and Selected Countries (28) Apply East Africa Region and Selected Countries filter
- Global (8) Apply Global filter
- South Asia Region and Selected Countries (17) Apply South Asia Region and Selected Countries filter
- Southern Africa Region and Selected Countries (3) Apply Southern Africa Region and Selected Countries filter
- Sub-Saharan Africa (37) Apply Sub-Saharan Africa filter
- West Africa Region and Selected Countries (2) Apply West Africa Region and Selected Countries filter
Dataset
Current search
- (-) Remove Labor & Time Use filter Labor & Time Use
- (-) Remove Health filter Health
- (-) Remove Agricultural Productivity, Yield, & Constraints filter Agricultural Productivity, Yield, & Constraints
This brief summarizes the evidence base for various types of commonly-used time use measurements, lists categories of time use as identified by major organizations and reports, and identifies studies finding significant impacts of interventions designed to reduce specific time constraints. The various approaches to time use measurement method each have different limitations (cost, timing, seasonality, susceptibility to recall bias, etc.), which may have implications for data analysis. The choice of how to measure time use may be particularly important for analyzing women’s time use. For example, limiting respondents to one activity per time slot when measuring daily time allocation may underestimate women's productivity or time allocations, as they are more likely than men to conduct simultaneous activities, such as childcare along with other activities.
Agricultural productivity growth has been empirically linked to poverty reduction across a range of measures for both staple and export crops. Many public and private organizations have thus made it a priority to increase farm productivity, and have invested billions toward this end.This report compiles measures commonly used to track agricultural productivity and discusses the ways in which they are subject to error, bias, and other data limitations. Though each measure has limitations, choosing the measure(s) most appropriate to the goals of an analysis and understanding the sources of variation allows for more effective and closely targeted investments and policy and program recommendations, particularly when measures suggest different drivers of productivity growth and links to poverty reduction.
Cereal yield variability is influenced by initial conditions such as suitability of the farming system for cereal cultivation, current production quantities and yields, and zone-specific potential yields limited by water availability. However, exogenous factors such as national policies, climate, and international market conditions also impact farm-level yields directly or provide incentives or disincentives for farmers to intensify production. We conduct a selective literature review of policy-related drivers of maize yields in Ethiopia, Kenya, Malawi, Rwanda, Tanzania, and Uganda and pair the findings with FAOSTAT data on yield and productivity. This report presents our cumulative findings along with contextual evidence of the hypothesized drivers behind maize yield trends over the past 20 years for the focus countries.
Common estimates of agricultural productivity rely upon crude measures of crop yield, typically defined as the weight harvested of a crop divided by the area harvested. But this common yield measure poorly reflects performance among farm systems combining multiple crops in one area (e.g., intercropping), and also ignores the possibility that farmers might lose crop area between planting and harvest (e.g., partial crop failure). Drawing on detailed plot-level data from Tanzania’s National Panel Survey, our research contrasts measures of smallholder productivity using production per hectare harvested and production per hectare planted.
An initial analysis (Research Brief - Rice Productivity Measurement) looking at rice production finds that yield by area planted differs significantly from yield by area harvested, particularly for smaller farms and female-headed households. OLS regression further reveals different demographic and management-related drivers of variability in yield gains – and thus different implications for policy and development interventions – depending on the yield measurement used. Findings suggest a need to better specify “yield” to more effectively guide agricultural development efforts.
This brief reviews the evidence of realized yield gains by smallholder farmers attributable to the use of high-quality seed and/or improved seed varieties. Our analysis suggests that in most cases, use of improved varieties and/or quality seed is associated with modest yield increases. In the sample of 395 trials reviewed, positive yield changes accompanied the use of improved variety or quality seed, on average, in 10 out of 12 crops, with rice and cassava as the two exceptions.
A farmer’s decision of how much land to dedicate to each crop reflects their farming options at the extensive and intensive margins. The extensive margin represents the total amount of agricultural land area that a farmer has available in a given year (referred to interchangeably as ‘farm size’ or ‘agricultural land’). A farmer increases land use on the extensive margin by planting on new agricultural land. The intensive margin represents area planted of crops as a proportion of total farm size. A farmer increases the intensive margin by increasing output within a fixed area. This analysis examines cropping patterns for households in Tanzania between 2008 and 2010 using data from the Tanzania National Panel Survey (TZNPS). This brief describes changes in farm size, total area planted, and area planted of select annual crops to highlight the dynamic nature of farmer’s cropping choices for a sample population of 2,246 agricultural households that reported having any agricultural land in 2008 or 2010. Throughout the brief, we present summary statistics at the national level and compare them with household-level data to show how results vary depending on how the sub-population is defined and how average measures can mask household level changes. We analyze these questions in the context of smallholders (defined as households with total agricultural land area as less than two hectares) and farming systems.
This report reviews the current body of peer-reviewed scholarship exploring the impacts of morbidity on economic growth. This overview seeks to provide a concise introduction to the major theories and empirical evidence linking morbidity – and the myriad different measures of morbidity – to economic growth, which is defined primarily in terms of gross domestic product (GDP) and related metrics (wages, productivity, etc.). Through a systematic review of published manuscripts in the fields of health economics and economic development we further identify the most commonly-used pathways linking morbidity to economic growth. We also highlight the apparent gaps in the empirical literature (i.e., theorized pathways from morbidity to growth that remain relatively untested in the published empirical literature to date).
Cassava production is prone to many constraints throughout the production cycle, including biotic, abiotic, and management constraints. This brief reviews the literature on the production impacts of two key cassava stressors: cassava bacterial blight (CBB) and postharvest physiological deterioration (PPD). We summarize available estimates of the frequency and magnitude of these constraints relative to other drivers of cassava production losses that affect smallholder farmers in Sub-Saharan Africa (SSA), review the control strategies proposed in the literature, report on the views of several experts in the field, and identify research gaps where relatively little appears to be known about CBB or PPD yield impacts or best practices for CBB or PPD management.
Donors and governments are increasingly seeking to implement development projects through self-help groups (SHGs) in the belief that such institutional arrangements will enhance development outcomes, encourage sustainability, and foster capacity in local civil society – all at lower cost to coffers. But little is known about the effectiveness of such institutional arrangements or the potential harm that might be caused by using SHGs as ‘vehicles’ for the delivery of development aid. This report synthesizes available evidence on the effectiveness of Self-Help Groups (SHGs) in promoting health, finance, agriculture, and empowerment objectives in South Asia and Sub-Saharan Africa. Our findings are intended to inform strategic decisions about how to best use scarce resources to leverage existing SHG interventions in various geographies and to better understand how local institutions such as SHGs can serve as platforms to enhance investments.
Suggested Citation:
Anderson, C. L., Gugerty, M. K., Biscaye, P., True, Z., Clark, C., & Harris, K. P. (2014). Self-Help Groups in Development: A Review of Evidence from South Asia and Sub-Saharan Africa. EPAR Technical Report #283. Evans School of Public Policy & Governance, University of Washington. Retrieved <Day Month Year> from https://epar.evans.uw.edu/sites/default/files/epar_283_shg_evidence_review_brief_10.23.20.pdf
This report draws on past and present peer-reviewed articles and published reports by institutions including the World Health Organization (WHO), the UK Department for International Development (DFID), and others to provide a scoping summary of the household-level spillovers and broader impacts of a select group of health initiatives. Rather than focusing on estimates of the direct health impacts of investments (e.g., reductions in mortality from vaccine delivery), we focus on estimates of the less-often reported spillover effects of specific health investments on household welfare or the broader economy. The brief is designed to give a concise overview of major theories linking health improvements to broader social and economic outcomes, followed by more in-depth summaries of available local- and country-level estimates of broader impacts, defined as project spillovers offering local, regional and national social and economic benefits not typically reported in project evaluations.