Year Published

Populations

Types of Research

Geography

EPAR TECHNICAL REPORT #411
Publication Date: 05/24/2021
Type: Data Analysis
Abstract

In this database, we compile current project data from three major international financial institutions (or IFIs) - the World Bank, African Development Bank, and the International Fund for Agricultural Development - to understand

  1. how much countries are borrowing from each institution. and
  2. how much of that funding is devoted to small scale producer agriculture.

We begin by gathering publicly accessible data through downloads and webscraping Python and R scripts. These data are then imported into the statistical software program, Stata, for cleaning and export to Excel for analysis. This data set contains rich information about current projects (active, in implementation, or recently approved), such as project title, project description, borrowing ministry, commitment amount, and sector. We then code relevant projects into two categories: On Farm (projects pertaining directly to small scale producer agriculture) and Rural/Agricultural Economies (inclusive of On Farm, but broader to include projects that impact community livelihoods and wellbeing). Finally, we annualize and aggregate these coded projects by IFI and then by country for analysis. Bilateral funding, government expenditures on agriculture, and development indicators are also included as supporting data to add context to a country's progress towards agricultural transformation.

The primary utility of this dataset is having all projects collected in a single spreadsheet where it is possible to search by key terms (e.g. commodity, market, financial, value chain) for lending by IFI and country, and to get some level of project detail.  We have categorized projects by lending category (e.g. irrigation, livestock, agricultural development, research/extention/training) to aggregate across IFI so that the total funding for any country is easier to find. For example, Ethiopia and Nigeria receive the most total lending from these IFIs (though not on a per capita basis), with each country receiving more than $3 billion per year on average. Ethiopia receives the most lending devoted to On Farm projects, roughly $585 million per year.  Overall, these data provide a snapshot of the magnitude and direction of these IFI's lending over the past several years to sub-Saharan Africa. 

Code
EPAR TECHNICAL REPORT #362
Publication Date: 01/16/2019
Type: Data Analysis
Abstract

Self-Help Groups (SHGs) in Sub-Saharan Africa can be defined as mutual assistance organizations through which individuals undertake collective action in order to improve their own lives. “Collective action” implies that individuals share their time, labor, money, or other assets with the group. In a recent EPAR data analysis, we use three nationally-representative survey tools to examine various indicators related to the coverage and prevalence of Self-Help Group usage across six Sub-Saharan African countries. EPAR has developed Stata .do files for the construction of a set of self-help group indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), Financial Inclusion Index (FII), and FinScope.

We compiled a set of summary statistics for the final indicators using data from the following survey instruments:

  • Ethiopia:
    • Ethiopia Socioeconomic Survey (ESS), Wave 3 (2015-16)
  • Kenya:
    • Kenya FinScope, Wave 4 (2015)
    • Kenya FII, Wave 4 (2016)
  • Nigeria
    • Nigeria FII, Wave 4 (2016)
  • Rwanda:
    • Rwanda FII, Wave 4 (2016)
  • Tanzania:
    • Tanzania National Panel Survey (TNPS), Wave 4 (2014-15)
    • Tanzania FinScope, Wave 4 (2017)
    • Tanzania FII, Wave 4 (2016)
  • Uganda:
    • Uganda FinScope, Wave 3 (2013)
    • Uganda FII, Wave 4 (2016)

The raw survey data files are available for download free of charge from the World Bank LSMS-ISA website, the Financial Sector Deepening Trust website, and the Financial Inclusion Insights website. The .do files process the data and create final data sets at the household (LSMS-ISA) and individual (FII, FinScope) levels with labeled variables, which can be used to estimate summary statistics for the indicators.

All the instruments include nationally-representative samples. All estimates from the LSMS-ISA are household-level cluster-weighted means, while all estimates from FII and FinScope are calculated as individual-level weighted means. The proportions in the Indicators Spreadsheet are therefore estimates of the true proportion of individuals/households in the national population during the year of the survey. EPAR also created a Tableau visualization of these summary statistics, which can be found here.

We have also prepared a document outlining the construction decisions for each indicator across survey instruments and countries. We attempted to follow the same construction approach across instruments, and note any situations where differences in the instruments made this impossible.

The spreadsheet includes estimates of the following indicators created in our code files:

Sub-Populations

  • Proportion of individuals who have access to a mobile phone
  • Proportion of individuals who have official identification
  • Proportion of individuals who are female
  • Proportion of individuals who use mobile money
  • Proportion of individuals who have a bank account
  • Proportion of individuals who live in a rural area
  • Individual Poverty Status
    • Two Lowest PPI Quintiles
    • Middle PPI Quintile
    • Two Highest PPI Quintiles

Coverage & Prevalence

  • Proportion of individuals who have interacted with a SHG
  • Proportion of individuals who have used an SHG for financial services
  • Proportion of individuals who depend most on SHGs for financial advice
  • Proportion of individuals who have received financial advice from a SHG
  • Proportion of households that have interacted with a SHG
  • Proportion of households in communities with at least one SHG
  • Proportion of households in communities with access to multiple farmer cooperative groups
  • Proportion of households who have used an SHG for financial services

Characteristics
In addition, we produced estimates for 29 indicators related to characteristics of SHG use including indicators related to frequency of SHG use, characteristics of SHG groups, and individual/household trust of SHGs.

EPAR Technical Report #339
Publication Date: 09/28/2017
Type: Data Analysis
Abstract

An ongoing stream of EPAR research considers how public good characteristics of different types of research and development (R&D) and the motivations of different providers of R&D funding affect the relative advantages of alternative funding sources. For this project, we seek to summarize the key public good characteristics of R&D investment for agriculture in general and for different subsets of crops, and hypothesize how these characteristics might be expected to affect public, private, or philanthropic funders’ investment decisions. 

Code