Year Published
- 2008 (2) Apply 2008 filter
- 2009 (4) Apply 2009 filter
- 2010 (1) Apply 2010 filter
- 2011 (6) Apply 2011 filter
- 2012 (3) Apply 2012 filter
- 2013 (5) Apply 2013 filter
- 2014 (2) Apply 2014 filter
- 2015 (1) Apply 2015 filter
- 2016 (1) Apply 2016 filter
- 2017 (3) Apply 2017 filter
- 2018 (0)
- 2019 (1) Apply 2019 filter
- 2020 (0)
- 2021 (0)
Research Topics
Populations
Types of Research
Geography
- East Africa Region and Selected Countries (47) Apply East Africa Region and Selected Countries filter
- Global (13) Apply Global filter
- (-) Remove South Asia Region and Selected Countries filter South Asia Region and Selected Countries
- (-) Remove Southern Africa Region and Selected Countries filter Southern Africa Region and Selected Countries
- Sub-Saharan Africa (56) Apply Sub-Saharan Africa filter
- West Africa Region and Selected Countries (22) Apply West Africa Region and Selected Countries filter
Dataset
Current search
- (-) Remove Aid & Other Development Finance filter Aid & Other Development Finance
- (-) Remove Risk, Preferences, & Decision-Making filter Risk, Preferences, & Decision-Making
- (-) Remove Sustainable Agriculture & Rural Livelihoods filter Sustainable Agriculture & Rural Livelihoods
- (-) Remove Southern Africa Region and Selected Countries filter Southern Africa Region and Selected Countries
- (-) Remove South Asia Region and Selected Countries filter South Asia Region and Selected Countries
In many countries in Sub-Saharan Africa and South Asia smallholder farmers are among the most vulnerable to climatic changes, and the observed shocks and stresses associated with these changes impact agricultural systems in many ways. This research brief offers findings on observed or measured changes in precipitation, temperature or both, on five biophysical pathways and systems including variable or changing growing seasons, extreme events, biotic stressors, plant species density, richness and range, impacts to streamflow, and impacts on crop yield. These findings are the result of a review of relevant documents cited in Kilroy (2015), references included in the IPCC draft Special Report on Food Security, and targeted searches from 2015 - present for South Asia and Sub-Saharan Africa.
Donor countries and multilateral organizations may pursue multiple goals with foreign aid, including supporting low-income country development for strategic/security purposes (national security, regional political stability) and for short-and long-term economic interests (market development and access, local and regional market stability). While the literature on the effectiveness of aid in supporting progress on different indicators of country development is inconclusive, donors are interested in evidence that aid funding is not permanent but rather contributes to a process by which recipient countries develop to a point that they are economically self-sufficient. In this report, we review the literature on measures of country self-sufficiency and descriptive evidence from illustrative case studies to explore conditions associated with transitions toward self-sufficiency in certain contexts.
Relative to chronic hunger, seasonal hunger in rural and urban areas of Africa is poorly understood. No estimates are compiled, and limited evidence exists on prevalence, causes, and impacts. This paper contributes to the body of evidence by examining the extent and potential drivers of seasonal hunger using panel data from the Malawi Integrated Household Panel Survey (IHPS). Farmers are commonly thought to use various strategies to smooth consumption, including planting “off-season” crops, investing in post-harvest storage technologies, or generally diversifying farm portfolios including livestock products and/or wild crops. Similarly, when markets are available, farmers may diversify through off-farm income sources in order to purchase food in lean seasons. We investigate whether seasonal hunger – distinct from chronic hunger – exists in Malawi, drawing on two waves of panel data from the LSMS-ISA series. We examine the extent of seasonal hunger, factors associated with variation in seasonal hunger, and how recurring and longer-term seasonal hunger might be associated with various household welfare measures. We find that both urban and rural households report experiencing seasonal hunger in the pre-harvest months, with descriptive evidence suggesting male gender, age, and education of household head, livestock ownership, and storage of crops are associated with lower levels of seasonal hunger. In addition, we find that Malawian households with seasonal hunger harvest crops earlier than average – a short-term coping mechanism that can reduce the crop’s yield and nutritional value, possibly perpetuating hunger.
This brief reviews the evidence of realized yield gains by smallholder farmers attributable to the use of high-quality seed and/or improved seed varieties. Our analysis suggests that in most cases, use of improved varieties and/or quality seed is associated with modest yield increases. In the sample of 395 trials reviewed, positive yield changes accompanied the use of improved variety or quality seed, on average, in 10 out of 12 crops, with rice and cassava as the two exceptions.
Cassava (Manihot esculenta Crantz) is a widely-grown staple food in the tropical and subtropical regions of Africa, Asia, and Latin America. In this brief we examine the environmental constraints to, and impacts of, smallholder cassava production systems in Sub-Saharan Africa (SSA) and South Asia (SA), noting where the analysis applies to only one of these regions. We highlight crop-environment interactions at three stages of the cassava value chain: pre-production (e.g., land clearing), production (e.g., soil, water, and input use), and post-production (e.g., crop storage). At each stage we emphasize environmental constraints on production (poor soil quality, water scarcity, crop pests, etc.) and also environmental impacts of crop production (e.g., soil erosion, water depletion and pesticide contamination). We then highlight good practices for overcoming environmental constraints and minimizing environmental impacts in smallholder cassava production systems. Evidence on environmental issues in smallholder cassava production is relatively thin, and unevenly distributed across regions. The literature on cassava in South Asian smallholder systems is limited, reflecting a crop of secondary importance (though it is widely found elsewhere in Asia such as South East Asia), in comparison to cassava in much of SSA. The majority of the research summarized in this brief is from SSA. The last row of Table 1 summarizes good practices currently identified in the literature. However, the appropriate strategy in a given situation will vary widely based on contextual factors, such as local environmental conditions, market access, cultural preferences, production practices and the policy environment.
This overview introduces a series of EPAR briefs in the Agriculture-Environment Series that examine crop-environment interactions for a range of crops in smallholder food production systems in Sub-Saharan Africa (SSA) and South Asia (SA). The briefs cover the following important food crops in those regions; rice (#208), maize (#218), sorghum/millets (#213), sweet potato/yam (#225), and cassava (#228).
Drawing on the academic literature and the field expertise of crop scientists, these briefs highlight crop-environment interactions at three stages of the crop value chain: pre-production (e.g., land clearing and tilling), production (such as water, nutrient and other input use), and post-production (e.g., waste disposal and crop storage). At each stage we emphasize environmental constraints on crop yields (including poor soils, water scarcity, crop pests) and impacts of crop production on the environment (such as soil erosion, water depletion and pest resistance). We then highlight best practices from the literature and from expert experience for minimizing negative environmental impacts in smallholder crop production systems.
This overview (along with the accompanying detailed crop briefs) seeks to provide a framework for stimulating across-crop discussions and informed debates on the full range of crop-environment interactions in agricultural development initiatives.
A paper based on this research series was published in Food Security in August 2015.
After cereals, root and tuber crops - including sweetpotato and yam (in addition to cassava and aroids), are the second most cultivated crops in tropical countries. This literature review examines the environmental constraints to, and impacts of, sweetpotato and yam production systems in Sub-Saharan Africa (SSA) and South Asia (SA). The review highlights crop-environment interactions at three stages of the sweetpotato/yam value chain: pre-production (e.g., land clearing), production (e.g., soil, water, and input use), and post-production (e.g., waste disposal, crop storage and transport). We find that sweetpotato and yam face similar environmental stressors. In particular, because sweetpotato and yam are vegetatively propagated, the most significant (and avoidable) environmental constraints to crop yields include disease and pest infection transmitted through the use of contaminated planting materials. Published estimates suggest yield gains in the range of 30–60% can be obtained through using healthy planting material. Moreover, reducing pest damage in the field can greatly increase the storage life of root and tuber crops after harvest – currently losses from rot and desiccation can claim up to 100% of stored sweetpotato and yam on smallholder farms.
Maize has expanded through the 20th and into the 21st century to become the principle staple food crop produced and consumed by smallholder farm households in Sub-Saharan Africa (SSA), and maize production has also expanded in South Asia (SA) farming systems. In this brief we examine the environmental constraints to, and impacts of, smallholder maize production systems in SSA and SA, noting where findings apply to only one of these regions. We highlight crop-environment interactions at three stages of the maize value chain: pre-production (e.g., land clearing), production (e.g., fertilizer, water, and other input use), and post-production (e.g., waste disposal and crop storage). At each stage we emphasize environmental constraints on maize production (such as poor soil quality, water scarcity, or crop pests) and also environmental impacts of maize production (such as soil erosion, water depletion, or chemical contamination). We then highlight best or good practices for overcoming environmental constraints and minimizing environmental impacts in smallholder maize production systems. Evidence on environmental constraints and impacts in smallholder maize production is uneven. Many environmental concerns such as biodiversity loss are commonly demonstrated more broadly for the agroecology or farming systems in which maize is grown, rather than specifically for the maize crop. And more research is available on the environmental impacts of agrochemical-based intensive cereal farming in Asia (where high-input maize is a common component) than on the low-input subsistence-scale maize cultivation more typical of SSA. Decisive constraint and impact estimates are further complicated by the fact that many crop-environment interactions in maize and other crops are a matter of both cause and effect (e.g., poor soils decrease maize yields, while repeated maize harvests degrade soils). Fully understanding maize-environment interactions thus requires recognizing instances where shortterm adaptations to environmental constraints might be exacerbating other medium- or long-term environmental problems. Conclusions on the strength of published findings on crop-environment interactions in maize systems further depend on one’s weighting of economic versus ecological perspectives, physical science versus social science, academic versus grey literature, and quantity versus quality of methods and findings.