Research Topics


Types of Research


EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR Technical Report #303
Publication Date: 08/10/2015
Type: Data Analysis

Common estimates of agricultural productivity rely upon crude measures of crop yield, typically defined as the weight harvested of a crop divided by the area harvested. But this common yield measure poorly reflects performance among farm systems combining multiple crops in one area (e.g., intercropping), and also ignores the possibility that farmers might lose crop area between planting and harvest (e.g., partial crop failure). Drawing on detailed plot-level data from Tanzania’s National Panel Survey, our research contrasts measures of smallholder productivity using production per hectare harvested and production per hectare planted.

An initial analysis (Research Brief - Rice Productivity Measurement) looking at rice production finds that yield by area planted differs significantly from yield by area harvested, particularly for smaller farms and female-headed households. OLS regression further reveals different demographic and management-related drivers of variability in yield gains – and thus different implications for policy and development interventions – depending on the yield measurement used. Findings suggest a need to better specify “yield” to more effectively guide agricultural development efforts.


EPAR Technical Report #245
Publication Date: 04/10/2015
Type: Data Analysis

A farmer’s decision of how much land to dedicate to each crop reflects their farming options at the extensive and intensive margins. The extensive margin represents the total amount of agricultural land area that a farmer has available in a given year (referred to interchangeably as ‘farm size’ or ‘agricultural land’). A farmer increases land use on the extensive margin by planting on new agricultural land. The intensive margin represents area planted of crops as a proportion of total farm size. A farmer increases the intensive margin by increasing output within a fixed area. This analysis examines cropping patterns for households in Tanzania between 2008 and 2010 using data from the Tanzania National Panel Survey (TZNPS).  This brief describes changes in farm size, total area planted, and area planted of select annual crops to highlight the dynamic nature of farmer’s cropping choices for a sample population of 2,246 agricultural households that reported having any agricultural land in 2008 or 2010. Throughout the brief, we present summary statistics at the national level and compare them with household-level data to show how results vary depending on how the sub-population is defined and how average measures can mask household level changes. We analyze these questions in the context of smallholders (defined as households with total agricultural land area as less than two hectares) and farming systems.