Research Topics

Publication Date: 12/28/2020
Type: Literature Review

Recent research has used typologies to classify rural households into categories such as “subsistence” versus “commercialized” as a means of targeting agricultural development interventions and tracking agricultural transformation. Following an approach proposed by Alliance for a Green Revolution in Africa, we examine patterns in two agricultural transformation hallmarks – commercialization of farm output, and diversification into non-farm income – among rural households in Ethiopia, Nigeria, and Tanzania from 2008-2015. We classify households into five smallholder farm categories based on commercialization and non-farm income levels (Subsistence, Pre-commercial, Transitioning, Specialized Commercial, and Diversified Commercial farms), as well as two non-smallholder categories (Largeholder farms and Non-farm households). We then summarize the share of households in each of these categories, examine geographic and demographic factors associated with different categories, and explore households’ movement across categories over time. We find a large amount of “churn” across categories, with most households moving to a different (more or less commercialized, more or less diversified) category across survey years. We also find many non-farm households become smallholder farmers – and vice versa – over time. Finally, we show that in many cases increases in farm household commercialization or diversification rates actually reflect decreased total farm production, or decreased total income (i.e., declines in the denominators of the agricultural transformation metrics), suggesting a potential loss of rural household welfare even in the presence of “positive” trends in transformation indicators. Findings underscore challenges with using common macro-level indicators to target development efforts and track progress at the household level in rural agrarian communities.

EPAR Technical Report #388
Publication Date: 05/30/2019
Type: Data Analysis

Designing effective policies for economic development and sustainable rural transformation, and monitoring progress toward the associated policy goals, often entails categorizing populations by their rural or urban status. Yet there exists no universal definition of what constitutes an "urban" area; countries alternately apply criteria related to settlement size, population density, or economic advancement. In this study, we explore the implications of applying different urban definitions in Tanzania and Nigeria, drawing from a wide set of data sources (administrative, remotely-sensed, and survey-based) to understand how urban categorizations align across data types and based on different criteria. To understand how an analysis of rural change is affected by the urban/rural definition applied, we begin with the nationally representative Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), collected in Tanzania (2008-2014) and Nigeria (2010-2015). This data set contains rich information on household demographics and income-generating activities, and crucially contains household geo-coordinates. Nine urban definitions are assessed, based on local administrative designations used by the National Bureaus of Statistics in Tanzania and Nigeria; settlement size (drawing from the Africapolis geospatial database of cities in Africa); population density (drawing from WorldPop); night lights intensity (drawing from the NOAA Nighttime Lights of the World dataset); impervious surface cover (drawing from the NASA Global Man-made Impervious Surface dataset from Landsat); local economic orientation (drawing from the LSMS-ISA); and our subjective assessment of daytime satellite imagery available via Google Earth.

Preliminary results indicate that the urban population share can vary considerably across different definitions, ranging from 11-35% in Tanzania and 20-60% in Nigeria. Nigeria is often found to be more urbanized than Tanzania, although this ordering is reversed for two definitions. In Tanzania, most urban definitions applied are relatively conservative, as compared with the administrative categorization. Thus, it is rare to see segments of the population re-categorized from rural to urban when using another definition, though some officially urban households are recategorized as rural. In Tanzania, these definitions sometimes lead to different conclusions regarding the concentration of poverty in rural versus urban areas, alternately indicating that poverty is increasingly a rural or urban problem. They also produce somewhat diverging stories regarding trends in welfare and farm income shares in the rural population. For example, while most definitions suggest that a growing share of rural homes now access electricity, this time trend disappears when using an economy-focused definition. The pace at which rural households have been shifting away from agriculture (a key component of structural transformation) is estimated to be twice as fast when relying on a night lights urban definition, as compared to the local administrative definition. At the same time, these different definitions paint a consistent picture of the rural farming population in terms of levels of engagement with input and output markets. This reflects the manner in which definitional decisions especially affect the categorization of non-farming (though possibly rural) households.

Technical Report #387
Publication Date: 04/04/2019
Type: Literature Review

This technical report is an analysis of current trends and theories in consumer protection from both a legal and economic perspective. Traditional economic theory, especially the work of Akerlof (1970), suggests there are situations in which consumer protection is necessary to maintain healthy markets. Still, debate continues on the best methods of consumer protection. As an example, some economists argue for information disclosure, others paternalism, and still others so-called soft- or libertarian-paternalism. Any of these forms can be acheived through different bodies including government agencies, consumer associations, self-regulation, statutory and non-statutory standards bodies, ombudsman and professional organizations. Finally, the transition to digital economies has presented new challenges for consumer protection including security, privacy, complex liability chains, and the complexity of the products themselves.

EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

Publication Date: 01/16/2019
Type: Data Analysis

Self-Help Groups (SHGs) in Sub-Saharan Africa can be defined as mutual assistance organizations through which individuals undertake collective action in order to improve their own lives. “Collective action” implies that individuals share their time, labor, money, or other assets with the group. In a recent EPAR data analysis, we use three nationally-representative survey tools to examine various indicators related to the coverage and prevalence of Self-Help Group usage across six Sub-Saharan African countries. EPAR has developed Stata .do files for the construction of a set of self-help group indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), Financial Inclusion Index (FII), and FinScope.

We compiled a set of summary statistics for the final indicators using data from the following survey instruments:

  • Ethiopia:
    • Ethiopia Socioeconomic Survey (ESS), Wave 3 (2015-16)
  • Kenya:
    • Kenya FinScope, Wave 4 (2015)
    • Kenya FII, Wave 4 (2016)
  • Nigeria
    • Nigeria FII, Wave 4 (2016)
  • Rwanda:
    • Rwanda FII, Wave 4 (2016)
  • Tanzania:
    • Tanzania National Panel Survey (TNPS), Wave 4 (2014-15)
    • Tanzania FinScope, Wave 4 (2017)
    • Tanzania FII, Wave 4 (2016)
  • Uganda:
    • Uganda FinScope, Wave 3 (2013)
    • Uganda FII, Wave 4 (2016)

The raw survey data files are available for download free of charge from the World Bank LSMS-ISA website, the Financial Sector Deepening Trust website, and the Financial Inclusion Insights website. The .do files process the data and create final data sets at the household (LSMS-ISA) and individual (FII, FinScope) levels with labeled variables, which can be used to estimate summary statistics for the indicators.

All the instruments include nationally-representative samples. All estimates from the LSMS-ISA are household-level cluster-weighted means, while all estimates from FII and FinScope are calculated as individual-level weighted means. The proportions in the Indicators Spreadsheet are therefore estimates of the true proportion of individuals/households in the national population during the year of the survey. EPAR also created a Tableau visualization of these summary statistics, which can be found here.

We have also prepared a document outlining the construction decisions for each indicator across survey instruments and countries. We attempted to follow the same construction approach across instruments, and note any situations where differences in the instruments made this impossible.

The spreadsheet includes estimates of the following indicators created in our code files:


  • Proportion of individuals who have access to a mobile phone
  • Proportion of individuals who have official identification
  • Proportion of individuals who are female
  • Proportion of individuals who use mobile money
  • Proportion of individuals who have a bank account
  • Proportion of individuals who live in a rural area
  • Individual Poverty Status
    • Two Lowest PPI Quintiles
    • Middle PPI Quintile
    • Two Highest PPI Quintiles

Coverage & Prevalence

  • Proportion of individuals who have interacted with a SHG
  • Proportion of individuals who have used an SHG for financial services
  • Proportion of individuals who depend most on SHGs for financial advice
  • Proportion of individuals who have received financial advice from a SHG
  • Proportion of households that have interacted with a SHG
  • Proportion of households in communities with at least one SHG
  • Proportion of households in communities with access to multiple farmer cooperative groups
  • Proportion of households who have used an SHG for financial services

In addition, we produced estimates for 29 indicators related to characteristics of SHG use including indicators related to frequency of SHG use, characteristics of SHG groups, and individual/household trust of SHGs.

EPAR Technical Report #355 and EPAR Research Briefs #355A & #355B & #355C
Publication Date: 06/15/2018
Type: Literature Review

Many low- and middle-income countries remain challenged by a financial infrastructure gap, evidenced by very low numbers of bank branches and automated teller machines (ATMs) (e.g., 2.9 branches per 100,000 people in Ethiopia versus 13.5 in India and 32.9 in the United States (U.S.) and 0.5 ATMs per 100,000 people in Ethiopia versus 19.7 in India and 173 in the U.S.) (The World Bank 2015a; 2015b). Furthermore, only an estimated 62 percent of adults globally have a banking account through a formal financial institution, leaving over 2 billion adults unbanked (Demirgüç–Kunt et al., 2015). While conventional banks have struggled to extend their networks into low-income and rural communities, digital financial services (DFS) have the potential to extend financial opportunities to these groups (Radcliffe & Voorhies, 2012). In order to utilize DFS however, users must convert physical cash to electronic money which requires access to cash-in, cash-out (CICO) networks—physical access points including bank branches but also including “branchless banking" access points such as ATMs, point-of-sale (POS) terminals, agents, and cash merchants. As mobile money and branchless banking expand, countries are developing new regulations to govern their operations (Lyman, Ivatury, & Staschen, 2006; Lyman, Pickens, & Porteous, 2008; Ivatury & Mas, 2008), including regulations targeting aspects of the different CICO interfaces. 

EPAR's work on CICO networks consists of five components. First, we summarize types of recent mobile money and branchless banking regulations related to CICO networks and review available evidence on the impacts these regulations may have on markets and consumers. In addition to this technical report we developed a short addendum (EPAR 355a) which includes a description of findings on patterns around CICO regulations over time. Another addendum (EPAR 355b) summarizes trends in exclusivity regulations including overall trends, country-specific approaches to exclusivity, and a table showing how available data on DFS adoption from FII and GSMA might relate to changes in exclusivity policies over time. A third addendum (EPAR 355c) explores trends in CICO network expansion with a focus on policies seeking to improve access among more remote or under-served populations. Lastly, we developed a database of CICO regulations, including a regulatory decision options table which outlines the key decisions that countries can make to regulate CICOs and a timeline of when specific regulations related to CICOs were introduced in eight focus countries, Bangladesh, India, Indonesia, Kenya, Nigeria, Pakistan, Tanzania, and Uganda.

EPAR Technical Report #346
Publication Date: 04/23/2018
Type: Literature Review

The private sector is the primary investor in health research and development (R&D) worldwide, with investment annual investment exceeding $150 billion, although only an estimated $5.9 billion is focused on diseases that primarily affect low and middle-income countries (LMICs) (West et al., 2017b). Pharmaceutical companies are the largest source of private spending on global health R&D focused on LMICs, providing $5.6 billion of the $5.9 billion in total private global health R&D per year. This report draws on 10-K forms filed by Pharmaceutical companies with the U.S. Securities and Exchange Commission (SEC) in the year 2016 to examine the evidence for five specific disincentives to private sector investment in drugs, vaccines and therapeutics for global health R&D: scientific uncertainty, weak policy environments, limited revenues and market uncertainty, high fixed costs for research and manufacturing, and imperfect markets. 10-K reports follow a standard format, including a business section and a risk section which include information on financial performance, investment options, lines of research, promising acquisitions and risk factors (scientific, market, and regulatory). As a result, these filings provide a valuable source of information for analyzing how private companies discuss risks and challenges as well as opportunities associated with global health R&D targeting LMICs.

EPAR Technical Report #345
Publication Date: 12/01/2017
Type: Literature Review

The share of private sector funding, relative to public sector funding, for drug, vaccine, and diagnostic research & development (R&D) differs considerably across diseases. Private sector investment in overall health R&D exceeds $150 billion annually, but is largely concentrated on non-communicable chronic diseases with only an estimated $5.9 billion focused on "global health", targeting diseases that primarily affect low and middle-income countries (LMICs). We examine the evidence for five specific disincentives to private sector global health R&D investment: scientific uncertainty, weak policy environments, limited revenues and market uncertainty, high fixed and sunk costs, and downstream rents from imperfect markets. Though all five may affect estimates of net returns from an investment decision, they are worth examining separately as each calls for a different intervention or remediation to change behavior.

EPAR Technical Report #349
Publication Date: 11/30/2017
Type: Literature Review

Donor countries and multilateral organizations may pursue multiple goals with foreign aid, including supporting low-income country development for strategic/security purposes (national security, regional political stability) and for short-and long-term economic interests (market development and access, local and regional market stability). While the literature on the effectiveness of aid in supporting progress on different indicators of country development is inconclusive, donors are interested in evidence that aid funding is not permanent but rather contributes to a process by which recipient countries develop to a point that they are economically self-sufficient. In this report, we review the literature on measures of country self-sufficiency and descriptive evidence from illustrative case studies to explore conditions associated with transitions toward self-sufficiency in certain contexts.


EPAR Technical Report #330
Publication Date: 11/22/2017
Type: Data Analysis

A large and growing body of scholarship now suggests that many household outcomes, including children’s education and nutrition, are associated with a wife’s bargaining power and control over household decision-making. In turn, bargaining power in a household is theorized to be driven by a wife’s financial and human capital assets – in particular the degree to which these assets contribute to household productivity and/or to the wife’s exit options. This paper draws on the detailed Farmer First dataset in Tanzania and Mali to examine husband and wife reports of a wife’s share of decision-making authority in polygynous households, where multiple wives jointly contribute to household productivity, and where exit options for any single wife may be less credible. We find that both husbands and wives assign less authority to the wife in polygynous households relative to monogamous households. We also find that a wife’s assets are not as strongly associated with decision-making authority in polygynous versus monogamous contexts.  Finally, we find that responses to questions on spousal authority vary significantly by spouse in both polygynous and monogamous households, suggesting interventions based on the response of a single spouse may incorrectly inform policies and programs.