Year Published
- 2008 (0)
- 2009 (0)
- 2010 (0)
- 2011 (0)
- 2012 (0)
- 2013 (0)
- 2014 (0)
- 2015 (0)
- 2016 (0)
- 2017 (2) Apply 2017 filter
- (-) Remove 2018 filter 2018
- 2019 (0)
- (-) Remove 2020 filter 2020
- 2021 (0)
Research Topics
Populations
Types of Research
- Data Analysis (0)
- Literature Review (1) Apply Literature Review filter
- Portfolio Review (0)
- Research Brief (1) Apply Research Brief filter
Geography
- East Africa Region and Selected Countries (1) Apply East Africa Region and Selected Countries filter
- Global (0)
- South Asia Region and Selected Countries (0)
- Southern Africa Region and Selected Countries (0)
- Sub-Saharan Africa (1) Apply Sub-Saharan Africa filter
- West Africa Region and Selected Countries (0)
Dataset
- ASTI (0)
- FAOSTAT (0)
- Farmer First (0)
- (-) Remove LSMS & LSMS-ISA filter LSMS & LSMS-ISA
- Other Datasets (1) Apply Other Datasets filter
Current search
- (-) Remove LSMS & LSMS-ISA filter LSMS & LSMS-ISA
- (-) Remove 2018 filter 2018
- (-) Remove Rural Populations filter Rural Populations
- (-) Remove 2020 filter 2020
Recent research has used typologies to classify rural households into categories such as “subsistence” versus “commercialized” as a means of targeting agricultural development interventions and tracking agricultural transformation. Following an approach proposed by Alliance for a Green Revolution in Africa, we examine patterns in two agricultural transformation hallmarks – commercialization of farm output, and diversification into non-farm income – among rural households in Ethiopia, Nigeria, and Tanzania from 2008-2015. We classify households into five smallholder farm categories based on commercialization and non-farm income levels (Subsistence, Pre-commercial, Transitioning, Specialized Commercial, and Diversified Commercial farms), as well as two non-smallholder categories (Largeholder farms and Non-farm households). We then summarize the share of households in each of these categories, examine geographic and demographic factors associated with different categories, and explore households’ movement across categories over time. We find a large amount of “churn” across categories, with most households moving to a different (more or less commercialized, more or less diversified) category across survey years. We also find many non-farm households become smallholder farmers – and vice versa – over time. Finally, we show that in many cases increases in farm household commercialization or diversification rates actually reflect decreased total farm production, or decreased total income (i.e., declines in the denominators of the agricultural transformation metrics), suggesting a potential loss of rural household welfare even in the presence of “positive” trends in transformation indicators. Findings underscore challenges with using common macro-level indicators to target development efforts and track progress at the household level in rural agrarian communities.
Precise agricultural statistics are necessary to track productivity and design sound agricultural policies. Yet, in settings where intercropping is prevalent, even crop yield can be challenging to measure. In a systematic survey of the literature on crop yield in low-income settings, we find that scholars specify how they estimate the yield denominator in under 10% of cases. Using household survey data from Tanzania, we consider four alternative methods of allocating land area on plots that contain multiple crops, and explore the implications of this measurement decision for analyses of maize and rice yield. We find that 64% of cultivated plots contain more than one crop, and average yield estimates vary with different methods of calculating area planted. This pattern is more pronounced for maize, which is more likely than rice to share a plot with other crops. The choice among area methods influences which of these two staple crops is found to be more calorie-productive per ha, as well as the extent to which fertilizer is expected to be profitable for maize production. Given that construction decisions can influence the results of analysis, we conclude that the literature would benefit from greater clarity regarding how yield is measured across studies.