Year Published
Research Topics
Populations
Types of Research
- (-) Remove Data Analysis filter Data Analysis
- Literature Review (2) Apply Literature Review filter
- Portfolio Review (0)
- (-) Remove Research Brief filter Research Brief
Geography
- (-) Remove East Africa Region and Selected Countries filter East Africa Region and Selected Countries
- Global (0)
- South Asia Region and Selected Countries (1) Apply South Asia Region and Selected Countries filter
- Southern Africa Region and Selected Countries (1) Apply Southern Africa Region and Selected Countries filter
- Sub-Saharan Africa (1) Apply Sub-Saharan Africa filter
- West Africa Region and Selected Countries (1) Apply West Africa Region and Selected Countries filter
Dataset
- ASTI (0)
- FAOSTAT (0)
- Farmer First (2) Apply Farmer First filter
- (-) Remove LSMS & LSMS-ISA filter LSMS & LSMS-ISA
- Other Datasets (5) Apply Other Datasets filter
Current search
- (-) Remove East Africa Region and Selected Countries filter East Africa Region and Selected Countries
- (-) Remove Sustainable Agriculture & Rural Livelihoods filter Sustainable Agriculture & Rural Livelihoods
- (-) Remove Poverty filter Poverty
- (-) Remove Research Brief filter Research Brief
- (-) Remove LSMS & LSMS-ISA filter LSMS & LSMS-ISA
- (-) Remove Data Analysis filter Data Analysis
Self-Help Groups (SHGs) in Sub-Saharan Africa can be defined as mutual assistance organizations through which individuals undertake collective action in order to improve their own lives. “Collective action” implies that individuals share their time, labor, money, or other assets with the group. In a recent EPAR data analysis, we use three nationally-representative survey tools to examine various indicators related to the coverage and prevalence of Self-Help Group usage across six Sub-Saharan African countries. EPAR has developed Stata .do files for the construction of a set of self-help group indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), Financial Inclusion Index (FII), and FinScope.
We compiled a set of summary statistics for the final indicators using data from the following survey instruments:
- Ethiopia:
- Ethiopia Socioeconomic Survey (ESS), Wave 3 (2015-16)
- Kenya:
- Kenya FinScope, Wave 4 (2015)
- Kenya FII, Wave 4 (2016)
- Nigeria
- Nigeria FII, Wave 4 (2016)
- Rwanda:
- Rwanda FII, Wave 4 (2016)
- Tanzania:
- Tanzania National Panel Survey (TNPS), Wave 4 (2014-15)
- Tanzania FinScope, Wave 4 (2017)
- Tanzania FII, Wave 4 (2016)
- Uganda:
- Uganda FinScope, Wave 3 (2013)
- Uganda FII, Wave 4 (2016)
The raw survey data files are available for download free of charge from the World Bank LSMS-ISA website, the Financial Sector Deepening Trust website, and the Financial Inclusion Insights website. The .do files process the data and create final data sets at the household (LSMS-ISA) and individual (FII, FinScope) levels with labeled variables, which can be used to estimate summary statistics for the indicators.
All the instruments include nationally-representative samples. All estimates from the LSMS-ISA are household-level cluster-weighted means, while all estimates from FII and FinScope are calculated as individual-level weighted means. The proportions in the Indicators Spreadsheet are therefore estimates of the true proportion of individuals/households in the national population during the year of the survey. EPAR also created a Tableau visualization of these summary statistics, which can be found here.
We have also prepared a document outlining the construction decisions for each indicator across survey instruments and countries. We attempted to follow the same construction approach across instruments, and note any situations where differences in the instruments made this impossible.
The spreadsheet includes estimates of the following indicators created in our code files:
Sub-Populations
- Proportion of individuals who have access to a mobile phone
- Proportion of individuals who have official identification
- Proportion of individuals who are female
- Proportion of individuals who use mobile money
- Proportion of individuals who have a bank account
- Proportion of individuals who live in a rural area
- Individual Poverty Status
- Two Lowest PPI Quintiles
- Middle PPI Quintile
- Two Highest PPI Quintiles
Coverage & Prevalence
- Proportion of individuals who have interacted with a SHG
- Proportion of individuals who have used an SHG for financial services
- Proportion of individuals who depend most on SHGs for financial advice
- Proportion of individuals who have received financial advice from a SHG
- Proportion of households that have interacted with a SHG
- Proportion of households in communities with at least one SHG
- Proportion of households in communities with access to multiple farmer cooperative groups
- Proportion of households who have used an SHG for financial services
Characteristics
In addition, we produced estimates for 29 indicators related to characteristics of SHG use including indicators related to frequency of SHG use, characteristics of SHG groups, and individual/household trust of SHGs.
In this brief, we report on measures of economic growth, poverty and agricultural activity in Ethiopia. For each category of measure, we first describe different measurement approaches and present available time series data on selected indicators. We then use data from the sources listed below to discuss associations within and between these categories between 1994 and 2017.
According to AGRA's 2017 Africa Agriculture Status Report, smallholder farmers make up to about 70% of the population in Africa. The report finds that 500 million smallholder farms around the world provide livelihoods for more than 2 billion people and produce about 80% of the food in sub-Saharan Africa and Asia. Many development interventions and policies therefore target smallholder farm households with the goals of increasing their productivity and promoting agricultural transformation. Of particular interest for agricultural transformation is the degree to which smallholder farm households are commercializating their agricultural outputs, and diversifying their income sources away from agriculture. In this project, EPAR uses data from the World Bank's Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA) to analyze and compare characteristics of smallholder farm households at different levels of crop commercialization and reliance on farm income, and to evaluate implications of using different criteria for defining "smallholder" households for conclusions on trends in agricultural transformation for those households.
Crop yield is one of the most commonly used partial factor productivity measures. It is used to estimate the ratio of quantity of crop output, generally measured in kilograms or tons, to a sole input, land area. Ongoing EPAR research explores the policy implications of measuring yield by area planted versus area harvested. In this brief, we consider implications for crop yield estimates of other decisions in how to construct yield measures from household survey microdata. Using data from three waves of the Tanzania National Panel Survey (TNPS) and two waves of the Ethiopia Socioeconomic Survey (ESS), both part of the World Bank’s Living Standards Measurement Study-Integrated Surveys on Agriculture (LSMS-ISA), we calculate separate crop yield estimates across survey waves following different decisions on disaggregating yield by gender(s) of the plot decision-maker(s) and for pure-stand and mixed stand (intercropped) plots, on including crop production from multiple growing seasons, and on how to treat outlier observations.
By examining how farmers respond to changes in crop yield, we provide evidence on how farmers are likely to respond to a yield-enhancing intervention that targets a single staple crop such as maize. Two alternate hypotheses we examine are: as yields increase, do farmers maintain output levels but change the output mix to switch into other crops or activities, or do they hold cultivated area constant to increase their total production quantity and therefore their own consumption or marketing of the crop? This exploratory data analysis using three waves of panel data from Tanzania is part of a long-term project examining the pathways between staple crop yield (a proxy for agricultural productivity) and poverty reduction in Sub-Saharan Africa.
There is a wide gap between realized and potential yields for many crops in Sub-Saharan Africa (SSA). Experts identify poor soil quality as a primary constraint to increased agricultural productivity. Therefore, increasing agricultural productivity by improving soil quality is seen as a viable strategy to enhance food security. Yet adoption rates of programs focused on improving soil quality have generally been lower than expected. We explore a seldom considered factor that may limit farmers’ demand for improved soil quality, namely, whether farmers’ self-assessments of their soil quality match soil scientists’ assessments. In this paper, using Tanzania National Panel Survey (TZNPS) data, part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA), we compare farmers’ own assessments of soil quality with scientific measurements of soil quality from the Harmonized World Soil Database (HWSD). We find a considerable “mismatch” and most notably, that 11.5 percent of survey households that reported having “good” soil quality are measured by scientific standards to have severely constrained nutrient availability. Mismatches between scientific measurements and farmer assessments of soil quality may highlight a potential barrier for programs seeking to encourage farmers to adopt soil quality improvement activities.
Common estimates of agricultural productivity rely upon crude measures of crop yield, typically defined as the weight harvested of a crop divided by the area harvested. But this common yield measure poorly reflects performance among farm systems combining multiple crops in one area (e.g., intercropping), and also ignores the possibility that farmers might lose crop area between planting and harvest (e.g., partial crop failure). Drawing on detailed plot-level data from Tanzania’s National Panel Survey, our research contrasts measures of smallholder productivity using production per hectare harvested and production per hectare planted.
An initial analysis (Research Brief - Rice Productivity Measurement) looking at rice production finds that yield by area planted differs significantly from yield by area harvested, particularly for smaller farms and female-headed households. OLS regression further reveals different demographic and management-related drivers of variability in yield gains – and thus different implications for policy and development interventions – depending on the yield measurement used. Findings suggest a need to better specify “yield” to more effectively guide agricultural development efforts.
A farmer’s decision of how much land to dedicate to each crop reflects their farming options at the extensive and intensive margins. The extensive margin represents the total amount of agricultural land area that a farmer has available in a given year (referred to interchangeably as ‘farm size’ or ‘agricultural land’). A farmer increases land use on the extensive margin by planting on new agricultural land. The intensive margin represents area planted of crops as a proportion of total farm size. A farmer increases the intensive margin by increasing output within a fixed area. This analysis examines cropping patterns for households in Tanzania between 2008 and 2010 using data from the Tanzania National Panel Survey (TZNPS). This brief describes changes in farm size, total area planted, and area planted of select annual crops to highlight the dynamic nature of farmer’s cropping choices for a sample population of 2,246 agricultural households that reported having any agricultural land in 2008 or 2010. Throughout the brief, we present summary statistics at the national level and compare them with household-level data to show how results vary depending on how the sub-population is defined and how average measures can mask household level changes. We analyze these questions in the context of smallholders (defined as households with total agricultural land area as less than two hectares) and farming systems.
This research project examines the traits of Tanzanian farmers living in five different farming system-based sub-regions: the Northern Highlands, Sukumaland, Central Maize, Coastal Cassava, and Zanzibar. We conducted quantitative analysis on data from the Tanzania National Panel Survey (TNPS). We complimented this analysis with qualitative data from fieldwork conducted in the summer of 2011 and September 2013 to present a quantitatively and qualitatively informed profile of the “typical” agricultural household’s land use patterns, demographic dynamics, and key issues or production constraints in each sub-region.