Research Topics

Publication Date: 12/28/2020
Type: Literature Review

Recent research has used typologies to classify rural households into categories such as “subsistence” versus “commercialized” as a means of targeting agricultural development interventions and tracking agricultural transformation. Following an approach proposed by Alliance for a Green Revolution in Africa, we examine patterns in two agricultural transformation hallmarks – commercialization of farm output, and diversification into non-farm income – among rural households in Ethiopia, Nigeria, and Tanzania from 2008-2015. We classify households into five smallholder farm categories based on commercialization and non-farm income levels (Subsistence, Pre-commercial, Transitioning, Specialized Commercial, and Diversified Commercial farms), as well as two non-smallholder categories (Largeholder farms and Non-farm households). We then summarize the share of households in each of these categories, examine geographic and demographic factors associated with different categories, and explore households’ movement across categories over time. We find a large amount of “churn” across categories, with most households moving to a different (more or less commercialized, more or less diversified) category across survey years. We also find many non-farm households become smallholder farmers – and vice versa – over time. Finally, we show that in many cases increases in farm household commercialization or diversification rates actually reflect decreased total farm production, or decreased total income (i.e., declines in the denominators of the agricultural transformation metrics), suggesting a potential loss of rural household welfare even in the presence of “positive” trends in transformation indicators. Findings underscore challenges with using common macro-level indicators to target development efforts and track progress at the household level in rural agrarian communities.

Publication Date: 11/22/2019
Type: Research Brief

While literature on achieving Inclusive Agricultural Transformation (IAT) through input market policies is relatively robust, literature on the effect of output market policies on IAT is rarer. We conduct a selective literature review of output market policies in low- and middle-income countries to assess their influence on IAT and find that outcomes are mixed across all policy areas. We also review indicators used to measure successful IAT,  typologies of market institutions involved in IAT, and agricultural policies and maize yield trends in East Africa. This report details our findings on these connected, yet somewhat disparate elements of IAT to shed more light on a topic that has not been the primary focus of the literature thus far.

Publication Date: 01/16/2019
Type: Data Analysis

Self-Help Groups (SHGs) in Sub-Saharan Africa can be defined as mutual assistance organizations through which individuals undertake collective action in order to improve their own lives. “Collective action” implies that individuals share their time, labor, money, or other assets with the group. In a recent EPAR data analysis, we use three nationally-representative survey tools to examine various indicators related to the coverage and prevalence of Self-Help Group usage across six Sub-Saharan African countries. EPAR has developed Stata .do files for the construction of a set of self-help group indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), Financial Inclusion Index (FII), and FinScope.

We compiled a set of summary statistics for the final indicators using data from the following survey instruments:

  • Ethiopia:
    • Ethiopia Socioeconomic Survey (ESS), Wave 3 (2015-16)
  • Kenya:
    • Kenya FinScope, Wave 4 (2015)
    • Kenya FII, Wave 4 (2016)
  • Nigeria
    • Nigeria FII, Wave 4 (2016)
  • Rwanda:
    • Rwanda FII, Wave 4 (2016)
  • Tanzania:
    • Tanzania National Panel Survey (TNPS), Wave 4 (2014-15)
    • Tanzania FinScope, Wave 4 (2017)
    • Tanzania FII, Wave 4 (2016)
  • Uganda:
    • Uganda FinScope, Wave 3 (2013)
    • Uganda FII, Wave 4 (2016)

The raw survey data files are available for download free of charge from the World Bank LSMS-ISA website, the Financial Sector Deepening Trust website, and the Financial Inclusion Insights website. The .do files process the data and create final data sets at the household (LSMS-ISA) and individual (FII, FinScope) levels with labeled variables, which can be used to estimate summary statistics for the indicators.

All the instruments include nationally-representative samples. All estimates from the LSMS-ISA are household-level cluster-weighted means, while all estimates from FII and FinScope are calculated as individual-level weighted means. The proportions in the Indicators Spreadsheet are therefore estimates of the true proportion of individuals/households in the national population during the year of the survey. EPAR also created a Tableau visualization of these summary statistics, which can be found here.

We have also prepared a document outlining the construction decisions for each indicator across survey instruments and countries. We attempted to follow the same construction approach across instruments, and note any situations where differences in the instruments made this impossible.

The spreadsheet includes estimates of the following indicators created in our code files:


  • Proportion of individuals who have access to a mobile phone
  • Proportion of individuals who have official identification
  • Proportion of individuals who are female
  • Proportion of individuals who use mobile money
  • Proportion of individuals who have a bank account
  • Proportion of individuals who live in a rural area
  • Individual Poverty Status
    • Two Lowest PPI Quintiles
    • Middle PPI Quintile
    • Two Highest PPI Quintiles

Coverage & Prevalence

  • Proportion of individuals who have interacted with a SHG
  • Proportion of individuals who have used an SHG for financial services
  • Proportion of individuals who depend most on SHGs for financial advice
  • Proportion of individuals who have received financial advice from a SHG
  • Proportion of households that have interacted with a SHG
  • Proportion of households in communities with at least one SHG
  • Proportion of households in communities with access to multiple farmer cooperative groups
  • Proportion of households who have used an SHG for financial services

In addition, we produced estimates for 29 indicators related to characteristics of SHG use including indicators related to frequency of SHG use, characteristics of SHG groups, and individual/household trust of SHGs.

EPAR Technical Report #346
Publication Date: 04/23/2018
Type: Literature Review

The private sector is the primary investor in health research and development (R&D) worldwide, with investment annual investment exceeding $150 billion, although only an estimated $5.9 billion is focused on diseases that primarily affect low and middle-income countries (LMICs) (West et al., 2017b). Pharmaceutical companies are the largest source of private spending on global health R&D focused on LMICs, providing $5.6 billion of the $5.9 billion in total private global health R&D per year. This report draws on 10-K forms filed by Pharmaceutical companies with the U.S. Securities and Exchange Commission (SEC) in the year 2016 to examine the evidence for five specific disincentives to private sector investment in drugs, vaccines and therapeutics for global health R&D: scientific uncertainty, weak policy environments, limited revenues and market uncertainty, high fixed costs for research and manufacturing, and imperfect markets. 10-K reports follow a standard format, including a business section and a risk section which include information on financial performance, investment options, lines of research, promising acquisitions and risk factors (scientific, market, and regulatory). As a result, these filings provide a valuable source of information for analyzing how private companies discuss risks and challenges as well as opportunities associated with global health R&D targeting LMICs.

EPAR Technical Report #345
Publication Date: 12/01/2017
Type: Literature Review

The share of private sector funding, relative to public sector funding, for drug, vaccine, and diagnostic research & development (R&D) differs considerably across diseases. Private sector investment in overall health R&D exceeds $150 billion annually, but is largely concentrated on non-communicable chronic diseases with only an estimated $5.9 billion focused on "global health", targeting diseases that primarily affect low and middle-income countries (LMICs). We examine the evidence for five specific disincentives to private sector global health R&D investment: scientific uncertainty, weak policy environments, limited revenues and market uncertainty, high fixed and sunk costs, and downstream rents from imperfect markets. Though all five may affect estimates of net returns from an investment decision, they are worth examining separately as each calls for a different intervention or remediation to change behavior.

EPAR Technical Report #349
Publication Date: 11/30/2017
Type: Literature Review

Donor countries and multilateral organizations may pursue multiple goals with foreign aid, including supporting low-income country development for strategic/security purposes (national security, regional political stability) and for short-and long-term economic interests (market development and access, local and regional market stability). While the literature on the effectiveness of aid in supporting progress on different indicators of country development is inconclusive, donors are interested in evidence that aid funding is not permanent but rather contributes to a process by which recipient countries develop to a point that they are economically self-sufficient. In this report, we review the literature on measures of country self-sufficiency and descriptive evidence from illustrative case studies to explore conditions associated with transitions toward self-sufficiency in certain contexts.


EPAR Technical Report #330
Publication Date: 11/22/2017
Type: Data Analysis

A large and growing body of scholarship now suggests that many household outcomes, including children’s education and nutrition, are associated with a wife’s bargaining power and control over household decision-making. In turn, bargaining power in a household is theorized to be driven by a wife’s financial and human capital assets – in particular the degree to which these assets contribute to household productivity and/or to the wife’s exit options. This paper draws on the detailed Farmer First dataset in Tanzania and Mali to examine husband and wife reports of a wife’s share of decision-making authority in polygynous households, where multiple wives jointly contribute to household productivity, and where exit options for any single wife may be less credible. We find that both husbands and wives assign less authority to the wife in polygynous households relative to monogamous households. We also find that a wife’s assets are not as strongly associated with decision-making authority in polygynous versus monogamous contexts.  Finally, we find that responses to questions on spousal authority vary significantly by spouse in both polygynous and monogamous households, suggesting interventions based on the response of a single spouse may incorrectly inform policies and programs.

EPAR Technical Report #335
Publication Date: 11/21/2017
Type: Data Analysis
EPAR has developed Stata do.files for the construction of a set of agricultural development indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA). We are sharing our code and documenting our construction decisions both to facilitate analyses of these rich datasets and to make estimates of relevant indicators available to a broader audience of potential users. 
Code, Code, Code, Code
EPAR Technical Report #317
Publication Date: 11/16/2017
Type: Data Analysis

In this report we analyze three waves nationally-representative household survey data from Kenya, Uganda, Tanzania, Nigeria, Pakistan, Bangladesh, India, and Indonesia to explore sociodemographic and economic factors associated with mobile money adoption, awareness, and use across countries and over time. Our findings indicate that to realize the potential of digital financial services to reach currently unbanked populations and increase financial inclusion, particular attention needs to be paid to barriers faced by women in accessing mobile money. While policies and interventions to promote education, employment, phone ownership, and having a bank account may broadly help to increase mobile money adoption and use, potentially bringing in currently unbanked populations, specific policies targeting women may be needed to close current gender gaps.

EPAR Technical Report #359
Publication Date: 11/13/2017
Type: Literature Review

Cash transfer programs are interventions that directly provide cash to target specific populations with the aim of reducing poverty and supporting a variety of development outcomes. Low- and middle-income countries have increasingly adopted cash transfer programs as central elements of their poverty reduction and social protection strategies. Bastagli et al. (2016) report that around 130 low- and middle-income countries have at least one UCT program, and 63 countries have at least one CCT program (up from 27 countries in 2008). Through a comprehensive review of literature, this report primarily considers the evidence of the long-term impacts of cash transfer programs in low- and lower middle-income countries. A review of 54 reviews that aggregate and summarize findings from multiple studies of cash transfer programs reveals largely positive evidence on long-term outcomes related to general health, reproductive health, nutrition, labor markets, poverty, and gender and intra-household dynamics, though findings vary by context and in many cases overall conclusions on the long-term impacts of cash transfers are mixed. In addition, evidence on long-term impacts for many outcome measures is limited, and few studies explicitly aim to measure long-term impacts distinctly from immediate or short-term impacts of cash transfers.